Simulink® Test™ Release Notes

<

MATLAB&SIMULINK

¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ Release Notes
© COPYRIGHT 2015-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

R2021a
External C/C++ code testing in the Test Manager 1-2
Collect coverage across multiplereleases 1-2
Atomic subsystem unittesting L. 1-2
Debug verify signal test failures using Model Slicer 1-2
Additional support forobservers, 1-2
Customize properties when creating test harnesses 1-3
Test sequence scenarios in iterations 1-3
Updates to Create Test for Model Component wizard 1-3
Simulation mode iterations in a single testcase 1-3
Output signal logging option for test harness creation 1-4

Include test harnesses when converting subsystem to model reference

.. 1-4
Simulation progress indicatorupdates 1-4
Simulation log messages at the command line 1-4
Enhanced test harness support for MATLAB-based Simulink tests 1-4
Run with Stepper support at test suite and test filelevels 1-5
Functionality being removed orchanged 1-5

0Old semantics for Test Sequence blocks will be removed 1-5
R2020b
Multiple scenarios in Test Sequence block 2-2

Parallel test execution on aremotecluster 2-2

iii

Test failure debugging using Model Slicer 2-2

Multi-release equivalencetests 2-2
Testcasereordering i 2-3
MATLAB-based Simulink tests 2-3
Generate tests for models and reuse test files using Test for Model
Componentwizard 2-3
Model reference parameter overrides 2-3
Reusable library subsystem SIL testing 2-4
Conditional breakpoints in Test Sequence block 2-4
Assessment callback and t (time) symbol 2-4
Test harness locking and model synchronization 2-4
Test harness metadata storage anywhere on MATLAB path 2-5
Baseline data file updates for Excelfiles 2-5
Buselementlogging 2-5
Model Testing Dashboard 2-5
Functionality being removed orchanged 2-5

sltest.testmanager.TestFile.createTestForSubsystem and
sltest.testmanager.TestSuite.createTestForSubsystem will be removed
.. 2-5
Removed real-time test case support for parameter overrides in model
TEIOTENICES . o et 2-6
Removed real-time test case support for logging output ports and states

.. 2-6
R2020a
Generated code reuse for SIL/PIL test harness generation 3-2
Test coverage enhancements in the Test Manager 3-2
Use Stateflow chart as test harness source and scheduler 3-2
verify keyword support in Stateflowcharts 3-2
Observer support for variable solvers and Stateflow states and variables
.. 3-2

iv Contents

Test harness support for Subsystem Reference blocks 3-2

Results viewer enhancements in the Test Manager 3-3
Updated execution order for test case callbacks 34
R2019b

Guided Back-to-Back Testing Wizard: Use guided workflow to set up back-
to-back equivalence and baseline testing 4-2

SIL/PIL Equivalence Testing: Create equivalence test cases from the

SIL/PIL Manager in Embedded Coder 4-2

Customized Test Reports: Create test specification reports from a test file,
testsuite, ortestcase 4-2
Test Result Reports: Multiple plots perpage 4-2
Test Assessments: Display results in the Simulation Data Inspector 4-3
Simulink Toolstrip: Contextual tabs for Simulink Test 4-3
R2019a

Temporal Requirements Verification: Assess model timing and signal
behavior using a form-based editor 5-2

Observers: Wirelessly access signals and add verification logic without
side effects 5-2

Simulation Output: Select signals and log data using a revised interface

.. 5-2
Input Data and Iterations: Test and iterate using Signal Editor scenarios
.. 5-3
Test Sequence Summary: Navigate test sequence steps using a summary
VI BW . . 5-3
Test Sequence Search: Find text in a test sequence 5-4
Test Coverage: Justify or exclude model objects using a coverage filter
.. 5-4
Baseline Testing: Store baseline data in MLDATX format 5-4

vi

Contents

Testing with MATLAB Unit Test 5-4

Simulink Test contextual tab in the Simulink toolstrip 5-4
Test harness support for bus elementports 5-5

R2018b
Excel-Based Testing: Define test cases in Excel spreadsheets 6-2
C Caller Block Support: Test models that contain handwritten code 6-2

SystemVerilog Assertions: Map Test Assessment blocks to SystemVerilog
Assertions in generated DPI components 6-2

Unified Scheduling Options: Generate scheduler for modeling styles

including export function models and rate-based models 6-2
Test harness support for string datatypes 6-3
Testing with MATLAB Unit Test 6-3
Ability to overwrite simulation outputresults 6-3
Functionality being removed orchanged 6-3

DriveFcnCallWithTestSequence in sltest.harness.create is not recommended 63
R2018a

Coverage Aggregation: Merge coverage results from multiple test runs

.. 7-2
Input Data Templates: Generate Excel and MAT-file templates for signal
datafrommeodels 7-2
Excel Format for Baseline Tests: Capture baseline simulation data in
Excelfiles 7-2
Excel Format Changes: Save test inputs and outputs in same sheet 7-2
Signal Editor: Create test scenario input data using a Signal Editor block
SOUTCE . . .o v vttt et e ettt e e 7-2
Coverage Metrics: Function and function-call metrics reported in Test
Manager 7-3

Changes to Test Sequence block programmatic interface 7-3
Testing with MATLAB Unit Test 7-3
R2017b
Test Harness Generation Callbacks: Customize harness creation with
post-create and post-rebuild callbacks 8-2
Harness Component Synchronization Comparison: Identify differences in
the component under test before explicitly synchronizing harnesses
.. 8-2
Multirelease Testing: Execute test cases with older MATLAB releases . . 8-2
Signal Failure Navigation and Baseline Updates: Navigate between signal
comparison failure regions, and automatically update baseline data
.. 8-2
Expanded Microsoft Excel Support: Define test inputs and expected
outputs including bus support and data type definition 8-3
Test File Comparison: Identify differences by comparing two test files
.. 8-3
Test Sequence Editor enhancements: Change step hierarchy, reorder
transitions, and cut/copy/paste teststeps 8-4
Input and Baseline Signal Editing: Edit test case baseline and input
signaldata 8-4
Iteration Naming: Create rules to name autogenerated iterations 8-4
External Inputs for Real-Time Applications: In test cases for real-time
applications, map external data inputs to root Inport blocks 8-4
Test Harness .MDL Support: Create test harnesses for models saved
in MDL file formats 8-5
Functionality Being Removed or Changed 8-5
R2017a
Harness Import: Simplify test harness management by converting test
harness models to Simulink Test harnesses 9-2

viii

Contents

Expanded Test Harness Capabilities: Create test harnesses with
additional semantics, blocks, sources, and synchronization behavior

.. 9-2
Support for Debug Mode: Debug system under test simulation 9-3
Time Tolerance: Specify leading and lagging time tolerance in test cases

.. 9-3
Simscape Component Support: Create test harnesses for subsystems

connected by Simscape physical connections 9-3
Expanded API: Edit and manage Test Sequence Blocks with an expanded

APT . 9-3
Signal Logging Selection: Specify signals to log in a test case without

modifyingthemodel, 9-4
Proof Objective Support for verify() Statements: verify() statements

interpreted as proof objectives for Simulink Design Verifier analysis

.. 9-4
Enhanced Reporting: Include MATLAB figures, save report options, and

automatically generate reports aftertesting 9-4
Test Manager Integration with Simulink Design Verifier: Generate
additional tests from within the Test Manager to increase coverage

.. 9-4
Test Manager Hierarchies: Expand and collapse trees using context menu

.. 9-5
Stop simulation at the end of testinputdata 9-5
Capture baseline data from test case iterations 9-5
Simplify test editor view by hiding unused sections 9-5
Test Case Conversion: Convert desktop simulation test cases to real-time

test cases 9-5
Data dimension settings for certain test harnessinputs 9-5
Run MATLAB Unit Tests in Fast Restartmode 9-5

R2016b
Custom Criteria: Define custom criteria for test case evaluation 10-2

MATLAB Unit Test Integration: Use MATLAB Unit Test to execute and
integrate tests 10-2

Test Case Tagging: Filter and execute tests using custom tags 10-2
Graphical Output for Model Verification Blocks: Analyze results from
Assertion and Model Verification blocks in Simulation Data Inspector

and the Test Manager i, 10-2

Initialize and Terminate Functions: Test harnesses include calls for
initialize and terminate systemsinamodel 10-2

Harness Requirements Linking: Establish requirements traceability for
external test harnesses L. 10-3

Test Case Conversion: Convert test cases between baseline, equivalence,
and simulationtesttypes L. 10-3

Additional Report Templates: Create PDF and HTML reports using report

templates 10-3
Output Event Definition: Create Test Sequences that trigger actions in

other subsystems 10-3
Access verify statement output using a programmatic interface 10-4
Revised visualization for verify statements and other assessments 10-4

Common test harness sources and sinks for signal and control inputs,
and revised signalrouting 10-4

Add baseline criteria using expected outputs captured by Simulink

Design Verifier 10-4

Set SIL or PIL simulation mode from the Test Manager for a model
referenced byatestharness 10-5
Highlight dependencies in test harnesses using Model Slicer 10-5
View baseline data graphically 10-5
R2016a

Real-Time Testing: Author and execute real-time tests with Simulink Real-
TIme 11-2

verify Statement: Author test sequence assessments to verify simulation
behavior without stopping the simulation 11-2

ix

X

Contents

Test Report Customization: Customize test result reports using Simulink

Report Generator, 11-2
External Test Harnesses: Save Simulink Test harnesses as external files
... 11-2
Test Iterations: Create tests with iterations such as parameters and input
VECEOTS e 11-2
Aggregate Coverage Results: Aggregate Simulink Verification and
Validation coverage results across executed tests 11-2
Parallel Test Execution: Distribute test execution in parallel to decrease
testruntime 11-3
Test Harness for Libraries: Create and manage test harnesses for library
COMPONENTS e 11-3
Requirement Traceability: Link to requirements in test harnesses and
testsequences 11-3
Simulink and Export Function Support: Create test harnesses for models
containing Simulink functions and export functions 11-3
Test Assessment block available for all harness sources 11-3
Test Sequence block support for messages 11-3
Test Sequence Editor enhancements 11-3
Simulink Projects integration 11-4
Test Generation for Subsystems 11-4
R2015aSP1
Bug Fixes
R2015b
Expanded Simulink Test API: Automate test creation, editing, and
execution using MATLAB scripts 13-2
Test Case Automation: Create test cases with inputs generated by
Simulink Design Verifier 13-2

Qualification and Certification: Qualify Simulink Test for supported

industry standards, including DO-178 and ISO 26262 13-2
Enhanced Reporting: Use Microsoft Word templates to customize report
generation e 13-2
Additional tools for Test Sequence editing and debugging 13-2
Simulink Report Generator inclusion for Test Sequence block 13-3
R2015a
Introduction to Simulink Test 14-2
Test harness for subsystem and model testing 14-2
Test Sequence block for defining tests and assessments 14-2
Test Manager for test authoring and systematic test execution 14-2

Baseline, equivalence, and back-to-back testing with pass-fail criteria

xi

R2021a

Version: 3.4
New Features
Bug Fixes

Compatibility Considerations

R2021a

1-2

External C/C++ code testing in the Test Manager

A new C/C++ Code Importer wizard for testing C and C++ code functions has been added to the Test
Manager. The wizard maps each function to a Simulink C Caller block, saves the blocks in a new
library, and creates the test file and test harness. The test file contains test cases for each imported
function. To access the wizard, click New > Test for C/C++ code in the Test Manager.
Corresponding classes and methods are also available for programmatic testing C and C++ code. See
sltest.CodeImporter.

Collect coverage across multiple releases

You can now compare coverage across two releases in the Test Manager. Coverage results are
returned in result sets and you can view both individual and aggregated coverage for the releases.
You can export coverage to a MATLAB® workspace variable and include it in a generated report. For
releases that support coverage filtering, you can automatically add missing coverage to tests
generated in the newer release. The earliest release for which multiple release coverage is supported
is three years (six releases) prior to the current release. See “Collect Coverage in Multiple-Release
Tests”.

Atomic subsystem unit testing

For atomic subsystems, you can now use a single test harness for equivalence tests that compare
normal and software-in-the-loop (SIL) simulation modes when using the Test for Model Component
wizard. The code for the top model must be generated using Embedded Coder® before model
simulation when running the test. The Test For Model Component wizard can automatically generate
these equivalence tests using Simulink Design Verifier™. The tests also support collecting model and
code coverage.

Debug verify signal test failures using Model Slicer

You can now use Model Slicer in the Simulink Test Manager to debug failed verify signals. When you
simulate the model in debug mode, Model Slicer highlights the model components that impact the
failed signals at each time step. You can move between failure regions to debug the cause of the
verification failures. See “Debugging Test Failures Using Model Slicer”.

Additional support for observers

Observers now support:

* Simulink string data type.

« Simulation Stepper, which enables stepping back and forward in a running simulation. The
Simulation Stepper is useful for debugging unexpected simulation results. The Simulation Stepper
options are on the design model toolstrip. When you select the Step Back check box, the observer
model steps back as much as is needed to stay synchronized with the step back activity of the
design model.

* OperatingPoint objects (see “Operating Point Behavior”).

» Coverage collection on observer models and models referenced by observer models. When you set
the coverage scope to observer models, the model reference selection dialog now lists observer
models in addition to model references. Observer models are distinguished from model references
by an (Observer) tag.

» Simulink Design Verifier analysis by using Observer Reference blocks, which now replace
verification subsystems. For more information, see Support observer reference block in Simulink
Design Verifier analysis (Simulink Design Verifier).

Customize properties when creating test harnesses

You can now change some default property settings to use customized defaults when creating a test
harness. To change the settings, you use an s1_customization.m file that contains a structure, and
add that file to the MATLAB path. The properties you can set using the sl _customization file are:

* PostCreateCallback — Specifies the callback script that is executed after the test harness is
created.

* SaveExternally — Specifies whether the test harness is saved as an internal or external
harness.

* LogOutputs — Specifies whether to log all outputs for the component under test of a test
harness.

For information, see “Customize Properties When Creating Test Harnesses”.

Test sequence scenarios in iterations

In the Test Manager, you can now use test sequence scenarios, created in Test Sequence blocks, in
test case iterations. Using iterations lets you run multiple scenarios in a single test case. In the Test
Manager Inputs section, you can select the Test Sequence block that contains the scenarios and the
default scenario for the iterations. Then, in the Iterations section, you can change the default
scenario for each iteration. See “Use Test Sequence Scenarios in the Test Sequence Editor and Test
Manager”

Updates to Create Test for Model Component wizard

The following changes have been made to the Create Test for Model Component wizard:

* Atomic subsystem equivalence (back-to-back) testing support — Create tests to compare normal
and software-in-the-loop (SIL) simulations. See “Atomic subsystem unit testing” on page 1-2.

* Enhanced MCDC — Use enhanced MCDC to improve test case generation for equivalence (back-
to-back) tests. A new check box is available only when software-in-the-loop (SIL) or processor-in-
the-loop (PIL) is the second simulation and when you select Simulink Design Verifier as the test
input. This option is on the Verification Strategy tab of the wizard. For more information on
Enhanced MCDC, see “Enhanced MCDC Coverage in Simulink Design Verifier” (Simulink Design
Verifier).

* Signal Editor input source — Use Signal Editor as an input source for test harnesses for
simulation tests. Previously, the Signal Editor was available as an option only when selecting
Simulink Design Verifier in the wizard.

Simulation mode iterations in a single test case
You can now use the Test Manager to iterate simulation modes (such as, normal, SIL, accelerator,

rapid accelerator) for all types of test cases. A new Simulation Modes check box has been added to
the Auto Generate Iterations dialog box.

1-3

R2021a

1-4

Output signal logging option for test harness creation

You can now turn on signal logging for all outputs from the component under test when you create its
test harness. Previously, you had to enable logging manually for each output signal of interest after
you created the test harness. Now, when you right-click a block to add a test harness, the Advanced
Properties tab of the Create Test Harness dialog box includes a new Log Output Signals check
box. This check box is on the Basic Properties tab of the Create Test Harness dialog box for library
and subsystem harnesses. For programmatic harness creation, a new LogHarnessOutputs name-
value pair has been added to sltest.harness.create.

Include test harnesses when converting subsystem to model
reference

Now, if you convert a subsystem or a subsystem reference to a model reference, test harnesses in the
subsystem are saved in the model reference. Previously, if a subsystem had a test harness defined for
the whole subsystem, you could not convert that subsystem to a model reference. For subsystems
with test harnesses for blocks, those test harnesses were deleted when the subsystem was converted
to a model reference.

Simulation progress indicator updates

The number of simulation progress messages shown in real-time during test execution has been
increased to provide more information about the current simulation phase. The progress messages
include Autosave, Compiling, and the Simulation Progress percentage. For tests with iterations,
progress messages are shown for each iteration.

Simulation log messages at the command line

You can now print simulation log messages to the MATLAB command line. To turn on this option, use
sltest.testmanager.setpref('ShowSimulationLogs', 'IncludeOnCommandPrompt', true
). To view the current preference setting, use
sltest.testmanager.getpref('ShowSimulationLogs', 'IncludeOnCommandPrompt'). For
more information, see sltest.testmanager.setpref and sltest.testmanager.getpref,
respectively.

Enhanced test harness support for MATLAB-based Simulink tests

Test harness support has been enhanced for MATLAB-based Simulink tests. Use
sltest.testCase.createSimulationInput(<model>, 'WithHarness',6<harness>) to create
anew sltest.harness.SimulationInput object that integrates input to test harnesses used in
the Test Manager.

Additionally, support for adding coverage and pushing test results to the Test Manager have been add
to the MATLAB test runner. See matlab.unittest.TestRunner.addModelCoverage and
matlab.unittest.TestRunner.addSimulinkTestResults.

Run with Stepper support at test suite and test file levels

You can now use Run with Stepper in the Test Manager to run steps interactively for test suites and
test files, in addition to using the stepper for individual test cases.

Functionality being removed or changed

Old semantics for Test Sequence blocks will be removed
Warns

The legacy semantics that Test Sequence blocks currently use will be replaced by semantics that are
compatible with Stateflow®. In most cases, this change will not affect the behavior of Test Sequence
blocks. However, if a Test Sequence block uses a symbol that is read in a transition or when condition,
and is written in the parent step (or parent of the parent step) of that transition or when condition,
the behavior might be different. For legacy semantics, the transition condition of the child step is
evaluated before the parent step. For semantics compatible with Stateflow, the transition condition of
the child step is evaluated after executing the parent step.

This step from a Test Sequence shows the legacy case where the Qutputl symbol is written in parent
step_2 and read in the when condition of child step_2_1. When you load or compile a model with
blocks that use legacy semantics, if this pattern is not detected, then those blocks are updated
automatically to use semantics compatible with Stateflow. If the pattern is found, a warning is
displayed and those blocks with the detected pattern are not updated.

B step 2
Output1 = sin(t);

step_2 1 when Qutput1 > 0
Output2 = 1;

step 2 2
Output2 = -1;

The examples show how to update Test Sequence blocks that use legacy semantics so they behave the
same and produce the same simulation results as semantics compatible with Stateflow blocks. In
most cases, you can update the blocks by moving code from the parent step to the child step.

This example shows how to update the Test Sequence block by moving the throttle,
throttle act, speed, and speed_act writes from the Test_Scenarios parent step to the
Test_Overspeed and Test EGO_Fault child steps.

This image shows the legacy semantics.

1-5

R2021a

Step Transition Next Step
Stabilize_Engine 1. after(10, sec) Test Scenarios W

throttle = 20; % 0=—> sensor failure
speed = 300; % 0 === sensor failure
ego = ego_i; % 12 === sensor failure
map = map_i; % 0 === sensor failure
throttle_act = throttle;

speed_act = speed;

B Test Scenarios

throttle= 10;

throttle _act = throttle;
speed = 400;
speed_act = speed;
ego=ego i

map = map_I;

Test_Owverspeed 1. speed = 700 Test EGO Fault w
throttle = 30;

throttle_act = throttle;
speed = 300+ramp(107et);
speed_act = speed:

Test EGO_Fault 1. after(3, sec) Reset To_Nor... v
ego=12;

Reset To Normal

This image shows the updated semantics that are compatible with Stateflow.

1-6

Step Transition
Stabilize_Engine 1. after{10, sec)

throttle = 20; % 0 === sensor failure
speed = 300; % 0 === sensor failure
ego = ego_i; % 12 === sensor failure
map = map_i; % 0 === sensor failure
throttle_act = throtile;

speed_act = speed;

B Test Scenarios
ego = ego_i;
map = map_I;

Test_Overspeed 1. speed > 700
throttle = 30:

throttle_act = throttle:

speed = 300+ramp(107et);

speed_act = speed:

Test EGO Fault 1. after(3, sec)
throttie= 10;

throttle_act = throtile;

speed = 400,

speed_act = speed;

ego = 12;

Reset To Normal

Next Step

Test_Scenarios

Test EGO_Fault

Reset To Normal

v

v

hd

This example shows how to update the Test Sequence block by moving the Outputl write from the

step_2 parent step to the step_2_1 and step_2_2 child steps.

This image shows the legacy semantics.

1-7

R2021a

Step Transition Next Step
step 1 1. step 2 0¥
Output! = 0;

E step 2

Output1 = sin(t);

step_2_1 when Output1 = 0
Output2 = 1;

step_2 2
Output2 = -1;

This image shows the updated semantics that are compatible with Stateflow.

Step Transition MNext Step
step 1 1. step 2 ¥
Outputt = 0;

Y step 2

step 2 1 when Output1 = 0
Output1 = sin(t);

Output2 = 1,
step 2 2
Output1 = sin(t);
Output2 = -1;

After you update a block, use

sltest.testsequence.setProperty(<blockpath>, 'Semantics', 'StateflowCompatible’

) to save the semantics setting. Changing the setting prevents future warnings about the semantics
for that block.

1-8

R2020b

Version: 3.3
New Features
Bug Fixes

Compatibility Considerations

R2020b

2-2

Multiple scenarios in Test Sequence block

You can now define more than one test sequence scenario in a single Test Sequence block by clicking
Use Scenarios. Each scenario has a unique name and is in a separate tab in the editor. You can add,
edit, delete, and copy scenarios. Before running the model, select the scenario to enable for that run.
Previously, the Test Sequence block defined only a single scenario. This limitation required using
multiple Test Sequence blocks to define multiple scenarios for testing a single model or harness.

Programmatically, you can use these functions for test scenarios:

*+ sltest.testsequence.useScenario

*+ sltest.testsequence.isUsingScenarios

* sltest.testsequence.addScenario

*+ sltest.testsequence.deleteScenario

*+ sltest.testsequence.editScenario

+ sltest.testsequence.activateScenario

*+ sltest.testsequence.getActiveScenario

* sltest.testsequence.getAllScenarios

+ sltest.testsequence.setScenarioControlSource
*+ sltest.testsequence.getScenarioControlSource
*+ sltest.testsequence.getActiveScenario

Parallel test execution on a remote cluster

You can now run tests in parallel on a remote cluster, such as in the cloud. MATLAB Parallel Server™
is required to use this feature. See Run Tests Using Parallel Execution and Running Code on Clusters
and Clouds (MATLAB Parallel Server).

Test failure debugging using Model Slicer

You can now use the Model Slicer in the Test Manager to debug a failed signal in a baseline test
failure. When you simulate the model in debug mode, the model components that impact the failed
signal are highlighted for each time step. You can move between failure regions to debug the cause of
the baseline differences. To use this feature, you must have a Simulink Check™ license. See
Debugging Baseline Test Failures Using Model Slicer.

Multi-release equivalence tests

You can now run each simulation of an equivalence (back-to-back) test case on a different MATLAB
release. The results for both releases are combined into a single results set. This feature lets you run,
for example, the normal mode simulation in an earlier MATLAB release and the SIL mode simulation
in a later release. See Run Tests in Multiple Releases of MATLAB for more information.

https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testsequence.usescenario.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testsequence.isusingscenarios.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testsequence.addscenario.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testsequence.deletescenario.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testsequence.editscenario.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testsequence.activatescenario.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testsequence.getactivescenario.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testsequence.getallscenarios.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testsequence.setscenariocontrolsource.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testsequence.getscenariocontrolsource.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testsequence.getactivescenario.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/run-tests-using-parallel-execution.html
https://www.mathworks.com/help/releases/R2020b/matlab-parallel-server/running-at-scale.html
https://www.mathworks.com/help/releases/R2020b/matlab-parallel-server/running-at-scale.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/debugging-baseline-test-failures-using-model-slicer.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/run-tests-in-multiple-releases-of-matlab.html

Test case reordering

In the Test Browser pane of the Test Manager, you can drag and drop test cases to change the order
in which the cases run during a test and appear in a test report. Alternatively, you can right-click on a
test case and select Move Up or Move Down.

MATLAB-based Simulink tests

You can now write baseline and equivalence tests for Simulink models in MATLAB test files (.m), and
then open and run the files in the Test Manager. You can also create a new MATLAB-based Simulink
test from the Test Manager. MATLAB test files give you a readable view of the test and let you
compare or merge tests from different MATLAB program files. They also allow you to use the Test
Manager to create a single results set for the whole test file, view and link requirements to MATLAB
test files and test cases, view aggregated coverage results, and generate test reports.

For more information, see Test Models Using MATLAB-Based Simulink Tests. For examples, see Using
MATLAB-Based Simulink Tests in the Test Manager and Collect Coverage Using MATLAB-Based
Simulink Tests.

Generate tests for models and reuse test files using Test for Model
Component wizard

You can now use the Test for Model Component wizard to generate tests for top-level models. If you
specify only a top model, you can optionally create a test harness for that model. If you choose to
create a test harness, you can specify the inputs and define the verification logic for the test harness.
You can also choose whether to create the tests in an existing test file or create a new test file.

Alternatively, you can use the API to create tests for top-level models. The new
createTestForComponent function replaces and has the same name-value pairs as the
createTestForSubsystem function. The new createTestForComponent function additionally
includes these name-value pairs:

* CreateTestFile — Create a test file when creating the test. The default setting is false.

* TestFile — Test file object or path. This input s required. If CreateTestFileis true,
TestFile is the new test file. If false, it is the name of a valid test file object.

* Component — Name of the top-level model or component to test. This input is required.

* CreateHarness — Create a test harness when creating the test for a top-model. The default
setting is true.

Model reference parameter overrides

You can override parameters within model reference workspaces. All model element parameters that
can be overridden, including those in Model references, appear in the Parameter Overrides section
of the Test Manager. You can also use addParameterOverride to override a parameter in a
specified workspace. If you import your parameters from or export them to an Excel® spreadsheet,
the BlockPath column in the spreadsheet now supports Model reference workspace names.

2-3

https://www.mathworks.com/help/releases/R2020b/sltest/ug/test-models-using-matlab-based-simulink-tests.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/using-matlab-based-simulink-test-in-the-test-manager.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/using-matlab-based-simulink-test-in-the-test-manager.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/collect-coverage-using-matlab-based-simulink-tests.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/collect-coverage-using-matlab-based-simulink-tests.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testmanager.sltest.testmanager.createtestforcomponent.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testmanager.parameterset.addparameteroverride.html

R2020b

2-4

Reusable library subsystem SIL testing

You can now conduct equivalence (back-to-back) testing on a reusable library subsystem by using
software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation. This feature allows you to:

* Unit test the generated code for a library subsystem
» Test an instance of reusable library subsystem in a model
* Obtain code coverage results for the library subsystem

To enable this testing, the component under test must be or must contain a reusable library
subsystem, and the subsystem must have function interfaces. If both of these conditions are met,
when you use the Test Manager or the Test for Model Component wizard to create a test harness, you
can now specify the function interface. Alternatively, when a test harness for a function interface is
open, you can use the SIL/PIL app to create an equivalence test case and export it to the Test
Manager. For programmatic use, both sltest.harness.create and sltest.harness.set have a
FunctionInterfaceName property.

For an example of how to perform a SIL test on a reusable subsystem library, see Test Library Blocks.

Conditional breakpoints in Test Sequence block

In addition to breakpoints that always pause a test, you can now add breakpoints that pause a Test
Sequence step or transition only when a specified condition is met. You can also convert normal
breakpoints to conditional ones and conditional breakpoints to normal ones. For information on
breakpoints, see Debug a Test Sequence.

Assessment callback and t (time) symbol

The Logical and Temporal Assessments section of the Test Manager has a new Assessment
Callback section. In this section, you can write a MATLAB script to define variables and map symbols
to those variables. The script is saved as part of the test file. In addition, t is now a symbol that is
automatically mapped to simulation time and can be used in assessment conditions and expressions.
For example, to limit an assessment to a time between 5 and 7, the expressionis (t > 5 & t < 7).

Test harness locking and model synchronization

The EnableComponentEditing name-value pair and LockMode property have been removed from
sltest.harness.create. These parameters controlled the locking behavior of the test harness and
component under test. Instead, use the SynchronizatonMode property to control harness and
component locking and synchronization. See Synchronize Changes Between Test Harness and Model
for more information.

Compatibility Considerations

Use the SynchronizationMode parameter instead of EnableComponentEditing and lockMode
in sltest.harness.create to control the locking and syncing behavior of the test harness and
model.

https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.harness.create.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.harness.set.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/test-library-blocks.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/debug-a-test-sequence-1.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.harness.create.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/sync-between-harness-and-model.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.harness.create.html

Test harness metadata storage anywhere on MATLAB path

You can move the harnessInfo metadata file for an external test harness to anywhere on the
MATLAB path. The file links the model and its test harnesses and is created at the same time the
harness is created. Previously, this file had to be stored in the same folder as the model. Being able to
move the harness metadata file allows you to separate your model and test artifacts.

Baseline data file updates for Excel files

You can now update that baseline test data stored in an Excel file without having to rerun the model
to recapture the baseline. You can update all signals, a specific signal, or a specific region of a signal.
You update Excel baseline files the same way you update MAT-files. See Examine Test Failures and
Modify Baselines for more information.

Bus element logging

The signal logging override interface has been extended to allow you to specify which leaf elements
of a bus signal to include in the results. Including specific elements, rather than the entire bus,
reduces memory usage when executing tests. It also improves the performance of generating reports
and exporting results from the Test Manager. The specified leaf elements appear as individual rows in
the signal set table of the Test Manager Logged Signals section. You can also specify a plot index to
plot a leaf signal on a specific subplot automatically upon execution.

See the Logging Leaf Signals of a Bus section in Capture Simulation Data in a Test Case for more
information.

Model Testing Dashboard

The Model Testing Dashboard collects and displays metric data on the status and quality of your
requirements-based testing. Assess the testing status of a model by using the dashboard to view:

* Summary data on requirements, tests, and traceability between requirements and tests
» Status and results for the latest test runs

* Model coverage measurements achieved by tests and justifications

» Alist of the latest artifacts in the project, organized by the associated models

For more information, see “Model Testing Dashboard: Track completeness of requirements-based
testing for compliance to standards such as ISO 26262” (Simulink Check). To use this feature, you
must have a Simulink Check license.

Functionality being removed or changed

sltest.testmanager.TestFile.createTestForSubsystem and
sltest.testmanager.TestSuite.createTestForSubsystem will be removed
Still runs

sltest.testmanager.TestFile.createTestForSubsystem and
sltest.testmanager.TestSuite.createTestForSubsystem will be removed in a future
release. Use createTestForComponent instead. This replacement function allows you to create
test cases for models, in addition to subsystems. Four additional name-value pairs are included in
createTestForComponent that might require updates to your code:

2-5

https://www.mathworks.com/help/releases/R2020b/sltest/ug/examine-test-failures-and-modify-baselines.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/examine-test-failures-and-modify-baselines.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/capture-simulation-data.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testmanager.testfile.createtestforsubsystem.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testmanager.testsuite.createtestforsubsystem.html
https://www.mathworks.com/help/releases/R2020b/sltest/ref/sltest.testmanager.sltest.testmanager.createtestforcomponent.html

R2020b

2-6

* TestFile — Required name-value pair to specify the test file for the created test case
* Component — Required name-value pair to specify the component or model to test
* CreateTestFile — Optional name-value pair for whether to create a new test file

* CreateHarness — Optional name-value pair for whether to create a test harness in addition to
the test case

Removed real-time test case support for parameter overrides in model references
Errors

Support for overriding parameters in model references for real-time test cases has been removed.

To prevent failures in real-time test cases that override parameters in model references, make the
model reference parameters accessible as model arguments (see Parameterize Instances of a
Reusable Referenced Model (Simulink)). After changing the accessibility, remove the parameters from
the Test Manager Parameter Overrides section and replace them with the corresponding model
arguments. If you do not update the parameters, an error occurs when you run the test. You can then
click Refresh Parameters in the Test Manager Parameter Overrides section to see which
parameters are not found in the model.

Removed real-time test case support for logging output ports and states
Errors

Support for logging output ports and states for real-time test cases has been removed. The Override
model settings section in the Test Manager Simulation Outputs section has also been removed for
real-time tests.

To prevent failures in real-time test cases that log output ports, mark the output signal for logging
either in the model (see Configure a Signal for Logging (Simulink)) or by using the Logged Signals
table in the Test Manager Simulation Outputs section (see Capture Simulation Data in a Test Case).

States set for logging in real-time tests are ignored, so you do not need to update your tests.

https://www.mathworks.com/help/releases/R2020b/simulink/ug/parameterize-referenced-models.html
https://www.mathworks.com/help/releases/R2020b/simulink/ug/parameterize-referenced-models.html
https://www.mathworks.com/help/releases/R2020b/simulink/ug/configuring-a-signal-for-signal-logging.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/capture-simulation-data.html

R2020a

Version: 3.2
New Features
Bug Fixes

Compatibility Considerations

R2020a

3-2

Generated code reuse for SIL/PIL test harness generation

When creating a test harness, you can now reuse existing code to generate a SIL/PIL block. This code
reuse allows you to use the Test Manager to verify generated code from a previous release without
having to regenerate that code. This feature speeds up SIL/PIL test harness creation. See Use SIL/PIL
to Verify Generated Code from an Earlier Release.

Test coverage enhancements in the Test Manager

In the Test Manager, the following improvements have been made for test coverage. You must have a
Simulink Coverage™ license to use these new features.

* Multiple test coverage filters can be applied simultaneously

* Models with updated test coverage filters do not require you to simulate the model again to see
updated coverage results

* Coverage results show the filters that were applied
» Colors used for coverage reporting match the colors used in Simulink Coverage

See Collect Coverage in Tests and Test Coverage for Requirements-Based Testing

Use Stateflow chart as test harness source and scheduler

You can now use Stateflow charts as test harness sources and schedulers. Using a chart as a test
source or scheduler allows support for MATLAB functions, supertransitions, and super steps. See Use
Stateflow Chart for Test Harness Inputs and Scheduling.

verify keyword support in Stateflow charts

In addition to supporting the verify keyword in Test Sequence blocks, Simulink Test now supports
verify in Stateflow charts. The verify keyword assesses a logical expression and is useful for
state-based testing.

Observer support for variable solvers and Stateflow states and
variables

Observers allow you to view dynamic information during test simulations. You can now:

* Observe Stateflow states and local variables.
* Add observers to models that use variable-step solvers
* Add and manage observers using the Wireless Observers section of the Tests tab

See Access Model Data Wirelessly by Using Observers.

Test harness support for Subsystem Reference blocks

Simulink Test now supports creating test harnesses for Subsystem models and Subsystem Reference
blocks in a model. You create these harnesses in the same way that you create other harnesses. For

https://www.mathworks.com/help/releases/R2020a/sltest/ug/verify-generated-code-from-an-earlier-release.html
https://www.mathworks.com/help/releases/R2020a/sltest/ug/verify-generated-code-from-an-earlier-release.html
https://www.mathworks.com/help/releases/R2020a/sltest/ug/collect-model-coverage-in-tests.html
https://www.mathworks.com/help/releases/R2020a/sltest/ug/test-coverage-for-requirements-based-testing.html
https://www.mathworks.com/help/releases/R2020a/sltest/ug/use-stateflow-chart-for-test-harness-inputs-and-scheduling.html
https://www.mathworks.com/help/releases/R2020a/sltest/ug/use-stateflow-chart-for-test-harness-inputs-and-scheduling.html
https://www.mathworks.com/help/releases/R2020a/sltest/ref/verify.html
https://www.mathworks.com/help/releases/R2020a/sltest/ug/access-model-data-wirelessly-by-using-observers.html

information about Subsystem Reference blocks and models, see “Subsystem Reference: Save
subsystem contents in a file that you can reference in a model” in the Simulink Release Notes.

Results viewer enhancements in the Test Manager

These Simulation Data Inspector (SDI) features have been incorporated into the Test Manager:

The SDI toolbar 1.3 which is located in the upper right of the Test

Manager results viewer. The toolbar includes subplots, data cursors, zoom, pan, select, fit to view,
and snapshot.

» Take a snapshot of the entire plot area or of a selected plot only.
* Save a snapshot to the clipboard, as an image file or as a MATLAB figure.

Snapshot

Take snapshot of:
@ Entire plot area

Selected plot only

Send to:
e Clipboard
Image File

MATLAB Figure

Snapshot

* Preserve signal selection and plot view when you rerun a test. If you rerun a test for the same
model, the signals plotted from the previous run are cleared and the results from the latest run
are plotted using the same plot layout and signal selection. Right-click another Sim Output to and
select Overwrite to replace the latest output plots with the selected outputs. To append the
selected Sim Output results to the currently displayed results, click Append.

3-3

R2020a

3-4

|79 Plot Signals »| Overwrite
iﬁyopy view settings | Append

47, Export...
Delete All

Expand All Under
Collapse All

* Copy a plot view layout and the signal selection from one Sim Output to another Sim Output in the
Results and Artifacts pane. Select the Sim Output to copy from. Then, click Transfer Signal View

Transfer

sowvier | and select the Sim Output to copy to.

* Change signal colors and line styles. Click on a signal line representation under a Sim Output to
open the dialog.

STANDARD CUSTOM STYLE

Updated execution order for test case callbacks

When multiple test cases are run at the same time for different models, the order in which the
callbacks for these test cases are executed is different than in previous releases. In previous releases,
all actions for the first test case executed, and then all actions for subsequent test cases. The new
execution order preloads each test case and loads its model. Then the first test case post-loads, its
model is simulated, and clean up is done. The following test cases then post-load, simulate, and clean
up. All the models are closed at the end of the entire test execution.

In previous releases, when a test suite ran multiple test cases on the same model, the model was
closed after each test case and then reopened for subsequent test cases. In the new execution order,
the model is kept open between test executions. As a result, code in the PreLoadFcn callback for the
model is executed only when the model is opened for the first test case. The Pre-Load callback is not
executed for subsequent test cases because the model remains open.

The following table shows the old and new execution order for two test cases run on separate models.
The models are not open before the test suite runs.

Old Execution Order New Execution Order

Run test case 1 Pre-Load callback. Run test case 1 Pre-Load callback. Then run model 1
Then, run model PreLoadFcn callback. |PreLoadFcn callback.

Old Execution Order

New Execution Order

Load model 1.

Load model 1.

Run model 1 PostLoadFcn callback.
Then, run test case 1 Post-Load
callback.

Run model 1 PostLoadFcn callback.

Simulate model 1 for test case 1.

Run test case 2 Pre-Load callback. Then run model 2
PreLoadFcn callback.

Run test case 1 Cleanup callback.

Load model 2.

Run model 1 CloseFcn callback.

Run model 2 PostLoadFcn callback. Then run test case 1
Post-Load callback.

Run test case 2 Pre-Load callback.

Then run model PreLoadFcn callback.

Simulate model 1 for test case 1.

Load model 2.

Run test case 1 Cleanup callback.

Run model 2 PostLoadFcn callback.
Then, run test case 2 Post-Load
callback.

Run test case 2 Post-Load callback.

Simulate model 2 for test case 2.

Simulate model 2 for test case 2.

Run test case 2 Cleanup callback.

Run test case 2 Cleanup callback.

Run model 2 CloseFcn callback.

Run model 2 CloseFcn callback.

Run model 1 CloseFcn callback.

The following table shows the old and new execution orders for test cases run on a single model for a
test suite with two test cases. The model is not open before the test suite runs.

Old Execution Order

New Execution Order

Run test case 1 Pre-Load callback.

Then run model PreLoadFcn callback.

Run test case 1 Pre-Load callback. Then run model
PreLoadFcn callback.

Load model.

Load model.

Run model PostLoadFcn callback.
Then run test case 1 Post-Load
callback.

Run model PostLoadFcn callback.

Simulate model.

Run test case 2 Pre-Load callback.

Run test case 1 Cleanup callback.

Run test case 1 Post-Load callback

Run model CloseFcn.

Simulate model.

Run test case 2 Pre-Load callback.

Then run model PreLoadFcn callback.

Run test case 1 Cleanup callback.

Load model.

Run test case 2 Post -Load callback.

Run model PostLoadFcn callback.
Then run test case 2 Post-Load
callback.

Simulate model.

Simulate model.

Run test case 2 Cleanup callback.

Run test case 2 Cleanup callback.

Run model CloseFcn callback.

R2020a

3-6

Old Execution Order New Execution Order

Run model CloseFcn callback.

The following table shows the old and new execution orders for test cases run on a single model for a
test suite with two test cases. The model is open before the test suite runs.

Notice that the model PreLoadFcn and PostLoadFcn callbacks do not execute because the model is
already loaded before the test runs. The model CloseFcn callback does not execute either because
the model is left open after test completion.

Old Execution Order New Execution Order

Run test case 1 Pre-Load callback. Run test case 1 Pre-Load callback.
Run test case 1 Post-Load callback. Run test case 2 Pre-Load callback.
Simulate model. Run test case 1 Post-Load callback
Run test case 1 Cleanup callback. Simulate model.

Run test case 2 Pre-Load callback. Run test case 1 Cleanup callback.
Run test case 2 Post-Load callback. Run test case 2 Post-Load callback.
Simulate model. Simulate model.

Run test case 2 Cleanup callback. Run test case 2 Cleanup callback.

Compatibility Considerations

If you have code in a model PreLoadFcn, PostLoadFcn, or CloseFcn callback, you might see
different behavior or unexpected errors for your tests due to the changes of when models open and
close. You might need to change the code in the callbacks. For example, for a script defined in the
model PreLoadFcn callback, if you see an Undefined function or variable error, the issue
might be resolved by moving the script from the PreLoadFcn callback to the PostLoadFcn callback.

If you have code in multiple Pre-Load callbacks for a test case, those functions might overwrite or
conflict with each other because all of the test case Pre-Load callbacks run before any of the models
simulate. When setting up test cases, do not use Pre-Load callbacks. Instead, use Post-Load
callbacks.

R2019b

Version: 3.1
New Features

Bug Fixes

R2019b

4-2

Guided Back-to-Back Testing Wizard: Use guided workflow to set up
back-to-back equivalence and baseline testing

Back-to-back testing compares the simulation outputs from different simulation modes, such as
Simulink normal simulation mode and SIL mode. The Test Manager now includes guided test
authoring for a model component.

The new Test for Model Component wizard helps you set up back-to-back equivalence and baseline
testing. It replaces the Test for Subsystem option. The wizard automatically creates the required test
harness or harnesses based on your selections. In the wizard dialog boxes, you select the:

* Simulink model component to test

» Source of the test inputs (from the model simulation or from Simulink Design Verifier)

* Type of testing to perform

* Format for saving the test data

See Generate Tests for a Component and Create and Run a Back-to-Back Test.

SIL/PIL Equivalence Testing: Create equivalence test cases from the
SIL/PIL Manager in Embedded Coder

The SIL/PIL Manager in Embedded Coder runs a model in normal mode and SIL/PIL simulation mode
so you can compare the results. To export a SIL/PIL automated verification test case to the Test
Manager, configure the test case, and then use the new Export to Test Manager button. The Test
Manager creates an equivalence test case that is populated with settings from the SIL/PIL Manager.
See Import Test Cases for Equivalence Testing.

You must have both Simulink Test and Embedded Coder to use this feature.

Customized Test Reports: Create test specification reports from a test
file, test suite, or test case

The new sltest.testmanager.TestSpecReport class allows you to create a test specification
report from a test file, test suite, or test case.

If you have MATLAB Report Generator™ and Simulink Report Generator, you can create custom
report templates and reporters for a test case or test suite reporter. To rearrange items or change the
fonts, indentation, or other features of a report, create custom report templates by using the
createTemplate method of sltest.testmanager.TestCaseReporter or
sltest.testmanager.TestSuiteReporter. To add new types of data to a report, create a custom
reporter by using the customizeReporter method.

Test Result Reports: Multiple plots per page

The test result report now supports more than one plot per page. You can specify up to four rows and
four columns of plots on a single page.

To specify the number of plots using the API, set the NumPlotRowsPerPage and
NumPlotColumnsPerPage properties in sltest.testmanager.Options or
sltest.testmanager. report.

https://www.mathworks.com/help/releases/R2019b/sltest/ug/generate-tests-for-a-component.html
https://www.mathworks.com/help/releases/R2019b/sltest/ug/create-and-run-a-back-to-back-test.html
https://www.mathworks.com/help/releases/R2019b/sltest/ug/import-test-cases-for-equivalence-testing.html
https://www.mathworks.com/help/releases/R2019b/sltest/ref/sltest.testmanager.testspecreport.html

In the Test Manager under Test Files Options, use the Create Test Result Report dialog box. To
specify the number of rows and columns, first select Plots for simulation output and baseline in
the dialog box.

Test Assessments: Display results in the Simulation Data Inspector

You can plot sltest.Assessment result data programmatically by using its new plot function. This
function automatically opens and displays the results in the Simulation Data Inspector.

Simulink Toolstrip: Contextual tabs for Simulink Test

The Simulink Toolstrip now includes contextual tabs that appear only when you need them. When you
click Simulink Test in the Apps tab, the Tests tab appears in the toolbar. The items displayed in the
Tests tab depend on the context. For more information, see Simulink Editor - Simulink Toolstrip in
the Simulink Release Notes.

4-3

https://www.mathworks.com/help/releases/R2019b/sltest/ref/sltest.assessment.html
https://www.mathworks.com/help/releases/R2019b/simulink/release-notes.html

R2019a

Version: 3.0
New Features

Bug Fixes

R2019a

5-2

Temporal Requirements Verification: Assess model timing and signal
behavior using a form-based editor

Hybrid systems with discrete- and continuous-time behavior can require complex timing-dependent
signal logic. To verify this logic, you can create temporal assessments using the new Logical and
Temporal Assessments editor in the Test Manager.

The editor helps you translate your textual requirements into unambiguous assessments with clear,
well-defined semantics. To create a temporal assessment, you use a form-based editor that prompts
you for particular conditions, events, signal values, delays, and responses that make up the
assessment. For increased readability, the editor summarizes the assessment in a language-like
statement.

To help with debugging, results include graphical representations of both the desired behavior and
the actual output. You can expand statements to view plots of each signal that contributes to the
overall result. For more information, see Assess Temporal Logic Using Temporal Assessments.

Observers: Wirelessly access signals and add verification logic
without side effects

Observers allow you to monitor the dynamic response of your system model without signal lines. You
can wirelessly debug and test Simulink signals from multiple areas and hierarchies of your system.

To use Observers, you add an Observer Reference block to your system model. The Observer
Reference block houses a separate Simulink model: the Observer model. The Observer model
contains Observer Ports, which are mapped to signals from your system model.

Accessing data by using Observers keeps your model block diagram simple. You do not need to add
ports, blocks, connections, or interfaces to your model. Observer blocks preserve your model

simulation semantics, which can help increase confidence that your verification results apply to the
implemented system. For more information, see Access Model Data Wirelessly by Using Observers.

Simulation Output: Select signals and log data using a revised
interface

R2019a introduces a revised interface and additional capabilities for capturing signal data:
* When you select signals in your model, you can now navigate through the model hierarchy and
add signals as you go.

» The signal selection dialog displays new signals to add and also displays signals you have already
selected.

* You can now capture data from local and global data stores, and select signals inside referenced
models.

To capture signal data in a test case:

1 Expand the Simulation Outputs section of the test case.
2 Highlight blocks or signals in the system under test.
3 Select signals of interest to add to your test case.

For more information, see Capture Simulation Data in a Test Case.

https://www.mathworks.com/help/releases/R2019a/sltest/ug/temporal-assessments.html
https://www.mathworks.com/help/releases/R2019a/sltest/ug/observer-reference-block.html
https://www.mathworks.com/help/releases/R2019a/sltest/ug/capture-simulation-data.html

Input Data and Iterations: Test and iterate using Signal Editor
scenarios

The Signal Editor block allows you to author multiple input data scenarios in a model or test harness.
You can now select a Signal Editor scenario as a test case input. You can also run test case iterations
that use different scenarios from the Signal Editor block. For more information on selecting inputs
and creating iterations, see Inputs and Test Iterations.

Test Sequence Summary: Navigate test sequence steps using a
summary view

You can scroll through test steps by using the Step Hierarchy pane in the Test Sequence Editor. For
long and complex test sequences, the hierarchy pane gives you a high-level summary of the sequence
using the test step names only. The pane highlights the test steps that are visible in the editor. You
can scroll through the hierarchy and click in the pane to navigate to a new group of test steps in the
editor.

Symbols St-ep
ﬂ " - »
L : nitializeTest
1. [DD_PhiRet Phi=0;
APEng = false;
Cutput TurmKnob = 0;
1. (=) Phi % Initializes test sequence outputs
2. | APEng ;
B Aftitudelevels
34 [TurnKnob TumKnob = {j;
| EndTest = 0;
Loo % Tests correct PhiRef for several attitud
EndTest
b 8 APEngage_LowRoll
DurationLimit 5 % Tests low attitude
Siep Hierarchy
Initialize Test)
Atftitudelevels
APEngage_LowRoll SetlLowPhi
Setl owPhi Phi = 4;

EngageAP. Low APEng = false;
APEngage_MedRoil EngageAP Low
SethMedPhi APEng = true:

EngageAP_Med
APEngage_Highiol 8 APEngage_MedRoll
SetHighPhi i % Tests medium attitude
< 3

5-3

https://www.mathworks.com/help/releases/R2019a/sltest/inputs.html
https://www.mathworks.com/help/releases/R2019a/sltest/ug/run-multiple-combinations-of-tests-using-iterations.html

R2019a

Test Sequence Search: Find text in a test sequence

You can find and replace text in Test Sequence actions, transitions, and descriptions by using the
Find & Replace tool in the Test Sequence Editor toolbar. To open the Find & Replace tool, click the

% icon in the toolbar.

In the Find what: box, enter the text you want to locate.
In the Replace with: with box, enter the updated text.
To locate the text, click Find Next or Find Previous.

D W N =

Click Replace to replace the old text with the updated text.

Test Coverage: Justify or exclude model objects using a coverage filter

When using Simulink Coverage to record test coverage, you can exclude or justify model objects that
are intentionally not exercised. Specify a coverage filter file in the Test Manager, for a test file, test
suite, or test case. For information on setting the coverage filter from the Test Manager, see Measure
Model Coverage. For information on setting the coverage filter programmatically, see
sltest.testmanager.CoverageSettings. For more information on how to use coverage filters,
see Coverage Filtering (Simulink Coverage).

Baseline Testing: Store baseline data in MLDATX format

In R2019a, you can add signal data from MLDATX files as baseline data, and use MLDATX files to
capture baseline data from a simulation. Additional model elements are supported for baseline data
capture:

* Arrays of buses

* Simscape™ data

* For Each Subsystem data

Testing with MATLAB Unit Test

You can create an MLDATX results file when you run a Simulink Test test file using MATLAB Unit
Test. By creating an MLDATX results file, you can view and investigate results in the Test Manager.

1 Create the sltest.plugins.TestManagerResultsPlugin using the 'ExportToFile'
name-value pair. Specify a name for the MLDATX file.

2 To view results in the Test Manager, click the Import button in the Test Manager toolbar and
select the MLDATX file.

Simulink Test contextual tab in the Simulink toolstrip

In R2019a, you have the option to turn on the Simulink Toolstrip. See "Simulink Toolstrip Preview
replaces menus and toolbars in the Simulink Desktop" in the Simulink Editor section of the Simulink
release notes for more details.

The Simulink Toolstrip includes contextual tabs -- they appear only when you need them. The
Simulink Test contextual tabs include options for completing actions that apply only to Simulink Test.

https://www.mathworks.com/help/releases/R2019a/sltest/ug/functional-testing-and-coverage-analysis.html#bvejg0_
https://www.mathworks.com/help/releases/R2019a/sltest/ug/functional-testing-and-coverage-analysis.html#bvejg0_
https://www.mathworks.com/help/releases/R2019a/sltest/ref/sltest.testmanager.coveragesettings-class.html
https://www.mathworks.com/help/releases/R2019a/slcoverage/ug/coverage-filtering.html
https://www.mathworks.com/help/releases/R2019a/sltest/ref/sltest.plugins.testmanagerresultsplugin-class.html

* To enable the Simulink Test toolstrip, from the Simulink toolstrip, click Apps then click the
Simulink Test button. The Test tab appears.

* Options in the Test tab change depending on what you select in the Simulink Editor. For example,
you can create a test harness for a subsystem by selecting the subsystem, then clicking the Add
Test Harness for Selection button.

Test harness support for bus element ports

In Simulink, you can use bus element ports to access individual bus signals at model interfaces. In
Simulink Test, you can create a test harness for a Model block or a model block diagram that uses bus
element ports at its root level. Creating a test harness and selecting test harness properties follows
the process described in Create Test Harnesses and Select Properties.

3-5

https://www.mathworks.com/help/releases/R2019a/sltest/ug/select-test-harness-properties-for-your-task.html

R2018b

Version: 2.5
New Features
Bug Fixes

Compatibility Considerations

R2018b

6-2

Excel-Based Testing: Define test cases in Excel spreadsheets

In R2018b, you can use Excel to specify test case input data, output data, tolerances, and parameters.
You can also capture simulation output in the same file.

If you have existing test data, you can generate an Excel template from your model, then copy the
data to the template. For details, see Author a Test in Excel. Once your Excel data is complete, you
can create test from the Excel file. For details, see Create Test with Data from Excel.

C Caller Block Support: Test models that contain handwritten code

The C Caller block allows you to call a C function directly from a model. You can test the C function
by creating a test harness for the C Caller block. Highlight the block and select Analysis > Test
Harness > Create for [block name]. For details, see Test Integrated Code. For an example, see C
Code Verification with Simulink Test.

SystemVerilog Assertions: Map Test Assessment blocks to
SystemVerilog Assertions in generated DPI components

DPI component generation for HDL Verifier™ is now supported for verify statements in Test
Sequence blocks and Test Assessment blocks. After adding verify statements to the block, you can
generate a SystemVerilog DPI component that includes a verification to be used in a Verilog® or
SystemVerilog simulation. For more information, see Generate SystemVerilog DPI Component from
verify Statement (HDL Verifier).

Unified Scheduling Options: Generate scheduler for modeling styles
including export function models and rate-based models

You can use scheduler blocks to execute functions and function-call subsystems in your test harness.
When you include a scheduler in a test harness, the scheduler interface is consistent for different
modeling styles, including export function models, rate-based models, and models with asynchronous
function calls (JMAAB style B). Also, you can select a Test Sequence block or MATLAB Function block
as the scheduler. In previous releases, you could use a Test Sequence block only.

If your model or subsystem has function calls or root inports, the test harness includes the scheduler
block.

To include a scheduler in the test harness:

1 From the Simulink menu, select Analysis > Test Harness > Create for Model. For a subsystem
test harness, select the subsystem and select Analysis > Test Harness > Create for [block
name].

2 In the test harness create dialog box, for Add scheduler for function-calls and rates, select
Test Sequence or MATLAB Function from the list. To include no scheduler block and connect
function calls to Inport blocks, select None.

3 Toinclude calls to initialize, reset, and terminate functions in your model, in the test harness
create dialog box, select Enable initialize, reset, and terminate ports.

When creating test harnesses with sltest.harness.create, use the new option
'SchedulerBlock"'.

https://www.mathworks.com/help/releases/R2018b/sltest/ug/_mw_b7a5cbde-9f37-477b-8452-151b9b4d14e6.html
https://www.mathworks.com/help/releases/R2018b/sltest/ug/create-test-with-data-from-excel-1.html
https://www.mathworks.com/help/releases/R2018b/sltest/ug/test-integrated-code.html
https://www.mathworks.com/help/releases/R2018b/sltest/examples/custom-c-code-verification-with-simulink-test.html
https://www.mathworks.com/help/releases/R2018b/sltest/examples/custom-c-code-verification-with-simulink-test.html
https://www.mathworks.com/help/releases/R2018b/hdlverifier/ug/generate-systemverilog-dpi-from-simulink-tests-verify-statement.html
https://www.mathworks.com/help/releases/R2018b/hdlverifier/ug/generate-systemverilog-dpi-from-simulink-tests-verify-statement.html
https://www.mathworks.com/help/releases/R2018b/sltest/ref/sltest.harness.create.html

Test harness support for string data types

When you create a test harness, a string input is connected to an Inport, Ground, or String Constant
block, depending on which harness source you choose. A string output is connected to an Outport or
Terminator block, depending on the harness sink you choose. For a list of source and sink blocks that
get connected to string inputs and outputs, see Test Harness Construction for Specific Model
Elements.

Testing with MATLAB Unit Test

* You can specify the location to save the HTML model coverage report. Construct a
ModelCoverageReport object that specifies the folder. Use the ModelCoverageReport object
when you create the ModelCoveragePlugin. For more information, see the example on the
ModelCoverageReport reference page.

* You can get model coverage results in a format compatible with continuous integration systems
such as Jenkins™. Use the ModelCoveragePlugin, ModelCoverageReport, and
CoberturaFormat. For more information, see Tests for Continuous Integration.

* You can include Test Manager results in the Details field of each TestResult object by using the
TestManagerResultsPlugin. To publish Test Manager results in the MATLAB Test Report,
configure your test file for reporting and add the TestReportPlugin and
TestManagerResultsPlugin classes to the TestRunner object. For more information, see the
example on the TestManagerResultsPlugin reference page.

Ability to overwrite simulation output results

When you run the same test multiple times, by default simulation output signals are added to existing
plots. To instead overwrite the results with the newest data, in the test results, right-click Sim
Output and select Plot Signals > Overwrite. For more information, see Simulation Outputs.

Functionality being removed or changed

DriveFcnCallWithTestSequence in sltest.harness.create is not recommended
Still runs

When you use sltest.harness.create, using DriveFcnCallWithTestSequence to include a
scheduler block is not recommended. Use the new name-value pair 'SchedulerBlock','Test
Sequence'.

6-3

https://www.mathworks.com/help/releases/R2018b/sltest/ug/test-harness-construction-for-specific-model-elements.html
https://www.mathworks.com/help/releases/R2018b/sltest/ug/test-harness-construction-for-specific-model-elements.html
https://www.mathworks.com/help/releases/R2018b/sltest/ref/sltest.plugins.coverage.modelcoveragereport-class.html
https://www.mathworks.com/help/releases/R2018b/sltest/ref/sltest.plugins.coverage.modelcoveragereport-class.html
https://www.mathworks.com/help/releases/R2018b/sltest/ref/sltest.plugins.modelcoverageplugin-class.html
https://www.mathworks.com/help/releases/R2018b/sltest/ref/sltest.plugins.coverage.modelcoveragereport-class.html
https://www.mathworks.com/help/releases/R2018b/sltest/ref/sltest.plugins.modelcoverageplugin-class.html
https://www.mathworks.com/help/releases/R2018b/sltest/ref/sltest.plugins.coverage.modelcoveragereport-class.html
https://www.mathworks.com/help/releases/R2018b/matlab/ref/matlab.unittest.plugins.codecoverage.coberturaformat-class.html
https://www.mathworks.com/help/releases/R2018b/sltest/ug/tests-for-continuous-integration.html
https://www.mathworks.com/help/releases/R2018b/sltest/ref/sltest.plugins.testmanagerresultsplugin-class.html
https://www.mathworks.com/help/releases/R2018b/matlab/ref/matlab.unittest.plugins.testreportplugin-class.html
https://www.mathworks.com/help/releases/R2018b/sltest/ref/sltest.plugins.testmanagerresultsplugin-class.html
https://www.mathworks.com/help/releases/R2018b/sltest/ref/sltest.plugins.testmanagerresultsplugin-class.html
https://www.mathworks.com/help/releases/R2018b/sltest/ug/test-case-sections.html#bulu9ho
https://www.mathworks.com/help/releases/R2018b/sltest/ref/sltest.harness.create.html

R2018a

Version: 2.4
New Features
Bug Fixes

Compatibility Considerations

R2018a

Coverage Aggregation: Merge coverage results from multiple test
runs

You can merge code coverage results from different test runs to a new set of results. In previous
releases, only multiple test cases from the same test file showed all the results in the Aggregated
Coverage Results section. In R2018a, you can merge results from multiple test files.

In the Test Manager Results and Artifacts pane, select the results sets whose coverage results you
want to show together. From the context menu, select Merge Coverage Results. The merged results
appear in the list, and the combined coverage results appear under Aggregated Coverage Results.
For more information, see Collect Coverage in Tests.

Input Data Templates: Generate Excel and MAT-file templates for
signal data from models

You can create Microsoft® Excel and MAT-file templates for input data from your Simulink model.
After you create a template, fill it in with your test data. You can then use the resulting file as input to

a baseline test.

To create the template, in a baseline test case for a model, under Inputs, click Create. Use the
dialog box to specify whether to create a MAT-file or Excel file and the location. Then click Create.

For more information, see Create Data Files to Use as Test Inputs.
Excel Format for Baseline Tests: Capture baseline simulation data in
Excel files

You can now capture baseline simulation data to a Microsoft Excel file. Previously, you captured
baseline data only to MAT-files.

In a baseline test case, under Baseline Criteria, click Capture. Select Excel as the file format, and
then click Capture.

For more information on capturing baselines, see Capture Baseline Criteria.

Excel Format Changes: Save test inputs and outputs in same sheet

You can now save Test Manager inputs and outputs in the same sheet. When you capture your
baseline or create an input file, by default you save them to the same sheet and file. Also, when you
create an Excel for inputs and outputs, you can enter all of the information in the same file. For
details on the format, see Specify Microsoft Excel File Format for Signal Data.

Signal Editor: Create test scenario input data using a Signal Editor
block source

With the Signal Editor block, you can create test input data scenarios and switch between them
during simulation. Select the Signal Editor block source during test harness creation. For more
information on the Signal Editor block, see Create and Edit Signal Data.

7-2

https://www.mathworks.com/help/releases/R2018a/sltest/ug/collect-model-coverage-in-tests.html
https://www.mathworks.com/help/releases/R2018a/sltest/ug/create-data-files-to-use-as-test-inputs.html
https://www.mathworks.com/help/releases/R2018a/sltest/ug/test-case-sections.html#mw_1df7720c-e782-41fa-b669-ac126413a024
https://www.mathworks.com/help/releases/R2018a/sltest/ug/specify-microsoft-excel-file-format-for-signal-data.html
https://www.mathworks.com/help/releases/R2018a/simulink/ug/insert-and-edit-signal-data.html

Coverage Metrics: Function and function-call metrics reported in Test
Manager

Test Manager now reports on function and function-call coverage metrics. You can select these
metrics in the Coverage Settings section of your test case to include the function and function-call
coverage percentage in your test results.

For more information on selecting code coverage options in Test Manager, see Collect Coverage in
Tests. For more information on coverage metrics, see Types of Model Coverage.

Changes to Test Sequence block programmatic interface

The Test Sequence Block programmatic interface has the following changes:

* The block property EnableActiveStepOutput is renamed to EnableActiveStepData. This
property is used in sltest.testsequence.getProperty and
sltest.testsequence.setProperty.

* The block property OutputData is renamed to ActiveStepDataSymbol. This property is used in
sltest.testsequence.getProperty and sltest.testsequence.setProperty.

Compatibility Considerations

* For scripts using the EnableActiveStepOutput property in
sltest.testsequence.getProperty, update scripts to use EnableActiveStepData:

blockInfo = sltest.testsequence.getProperty...
(blockPath, 'EnableActiveStepData')

* For scripts using the EnableActiveStepOutput property in
sltest.testsequence.setProperty, update scripts to use EnableActiveStepData:

blockInfo = sltest.testsequence.setProperty...
(blockPath, 'EnableActiveStepData',Value)

» For scripts using the QutputData property in sltest.testsequence.getProperty, update
scripts to use ActiveStepDataSymbol:

blockInfo = sltest.testsequence.getProperty...
(blockPath, 'ActiveStepDataSymbol")

» For scripts using the QutputData property in sltest.testsequence.setProperty, update
scripts to use ActiveStepDataSymbol:

blockInfo = sltest.testsequence.setProperty...
(blockPath, 'ActiveStepDataSymbol',Value)

Testing with MATLAB Unit Test

* Model coverage: You can collect model coverage when running test cases using MATLAB Unit
Test. Create a model coverage plugin for the test runner, attach the plugin to the test runner, then
run the test. For more information and an example, see
sltest.plugins.ModelCoveragePlugin.

* Results hierarchy with MATLAB Unit Test: When you run Simulink Test test files using MATLAB
Unit Test, the Test Manager results now reflect the test hierarchy. Previously, the results appeared
in a flat list. For example, this test file contains two test suites:

https://www.mathworks.com/help/releases/R2018a/sltest/ug/collect-model-coverage-in-tests.html
https://www.mathworks.com/help/releases/R2018a/sltest/ug/collect-model-coverage-in-tests.html
https://www.mathworks.com/help/releases/R2018a/slcoverage/ug/types-of-model-coverage.html
https://www.mathworks.com/help/releases/R2018a/sltest/ref/sltest.testsequence.getproperty.html
https://www.mathworks.com/help/releases/R2018a/sltest/ref/sltest.testsequence.setproperty.html
https://www.mathworks.com/help/releases/R2018a/sltest/ref/sltest.testsequence.getproperty.html
https://www.mathworks.com/help/releases/R2018a/sltest/ref/sltest.testsequence.setproperty.html
https://www.mathworks.com/help/releases/R2018a/sltest/ref/sltest.plugins.modelcoverageplugin-class.html

R2018a

v'Ef sltestHeatpumpLibraryTests
~ 7] Library Elock Test
[£] Requirements Scenarios
~ [T Instance Test
[£] Baseline Test

Running the test with MATLAB Unit Test produces Test Manager results with hierarchy:

- Results: 2017-Dec-15 16:02:42 28
~ [=] shtestHeatpumpLibraryTests 2@
+ [Library Block Test 18

+ |=] Requirements Scenarios (]

v [l Verify Statements)

3 Sim Output (sltestHeatpumpLibrary

[Instance Test 1@

+ [£] Baseline Test o

3 Baseline Criteria Result (]

b P Sim Output (shtestHeatpumpLibrary

In the command-line results, the result Name field reflects the hierarchy. For example, running the
test file produces:

heatpumpResult =
1x2 TestResult array with properties:

Name
Passed
Failed
Incomplete
Duration
Details

Totals:

2 Passed, 0 Failed, 0 Incomplete.

4.4774 seconds testing time.
The result Name field lists test file, test suite, and test case names:
>> heatpumpResult.Name

ans =

'sltestHeatpumpLibraryTests >
Library Block Test/Requirements Scenarios'

ans

'sltestHeatpumpLibraryTests >
Instance Test/Baseline Test'

R2017b

Version: 2.3
New Features
Bug Fixes

Compatibility Considerations

R2017b

8-2

Test Harness Generation Callbacks: Customize harness creation with
post-create and post-rebuild callbacks

Customize test harnesses using callback functions that run after you create or rebuild the test
harness. For example, you can add custom source or sink blocks, add a plant model for closed-loop
testing of a controller, or enable data logging. Test harness callbacks are reusable functions, allowing
you to add or change harness features and settings systematically. To create a callback:

1 Create the callback function. In the function, script the commands to customize the test harness.

2 Specify the function as the Post-create callback method or Post-rebuild callback method.
For a new test harness, specify a post-create or post-rebuild callback in the Advanced
Properties of the test harness creation dialog box. For an existing test harness, specify a post-
rebuild callback in the harness properties dialog box.

For more information and an example, see Customize Test Harnesses.

Harness Component Synchronization Comparison: Identify differences
in the component under test before explicitly synchronizing harnesses

Before synchronizing the component under test between the test harness and main model, you can
check whether the component under test differs from the component in the main model by using
sltest.harness.check. For more information on component synchronization, see Synchronize Changes
Between Test Harness and Model.

Multirelease Testing: Execute test cases with older MATLAB releases

You can develop baseline, equivalence, and simulation tests in the current MATLAB release and run
the test simulations in a different release. Developing tests in the current MATLAB release allows you
to take advantage of recent Test Manager developments and run simulations in your production
environment. The release you run the test in must support the features used in the test—for example,
test harnesses—to run.

For baseline tests, you can establish the baseline data in one release and run the test case in that
release. Or you can establish the baseline data in one release and run the test in another release,
enabling you to compare results from different releases.

When running tests in multiple releases, your model or test harness must be compatible with the
MATLAB version running your test. Also, the MATLAB version must support the features of your test
case. Previous MATLAB versions do not support test case features unavailable in that release. Certain
test case features are not supported for multiple release testing.

For more information, see Run Tests in Multiple Releases.

Signal Failure Navigation and Baseline Updates: Navigate between
signal comparison failure regions, and automatically update baseline
data

If a baseline test result includes failures, you can navigate between signal comparison failures in the
data inspector view of the Test Manager. From this view, you can update the test baseline data in
MAT-files. Updating the baseline data based on test failures is useful if your failures are due to a
recent model update, such as a parameter value change.

https://www.mathworks.com/help/releases/R2017b/sltest/ug/customize-test-harnesses.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.harness.check.html
https://www.mathworks.com/help/releases/R2017b/sltest/ug/sync-between-harness-and-model.html
https://www.mathworks.com/help/releases/R2017b/sltest/ug/sync-between-harness-and-model.html
https://www.mathworks.com/help/releases/R2017b/sltest/ug/run-tests-in-multiple-releases.html

For more information, see Examine Test Failures and Modify Baselines.

Expanded Microsoft Excel Support: Define test inputs and expected
outputs including bus support and data type definition

Microsoft Excel files in Test Manager can now specify detailed information about signal data. You can
use the expanded format for input signal data when you select an Excel file as baseline criteria.

In previous releases, in Excel file format only scalar doubles were supported. Now you can specify
signal types (such as complex and multidimensional), data types, units, interpolation, bus element
information, and function-call execution times. To learn about the format, see Specify Microsoft Excel
File Format for Signal Data.

You can import multiple Microsoft Excel sheets at once to use as separate test input groups or a
range of data to import. You can also specify sheets and a range of cells to use as baseline criteria.

The Test Manager API has some changes in support of the new capabilities.

* A new method, addExcelSpecification, for the sltest.testmanager.BaselineCriteria
and sltest.testmanager.TestInput classes

» New arguments for specifying options for sltest.testmanager.TestInput files with
sltest.testmanager.TestCase.addBaselineCriteria and
sltest.testmanager.TestCase.addInput.

* A new property, ExcelSpecifications, for the sltest.testmanager.BaselineCriteria
and sltest.testmanager.TestInput classes.

Compatibility Considerations

The refreshIfExists argument for sltest.testmanager.TestCase.addBaselineCriteria
has been replaced with a Name,Value pair. Scripts that add MAT-files that use this argument will still
work. See “Functionality Being Removed or Changed” on page 8-5 for details.

The SheetName property for sltest.testmanager.TestInput has been replaced with the
ExcelSpecifications property. Scripts that use this property will still work. See “Functionality
Being Removed or Changed” on page 8-5 for details.

The sltest.testmanager.TestCase.addInput method by default now returns one
sltest.testmanager.TestInput object for each sheet in an Excel file added as a test case input.
In previous releases, this method returned a single sltest.testmanager.TestInput object even
if the Excel file had multiple sheets.

As a result, commands in existing scripts that operate on the result of this method might return an
error. An error occurs with commands that expect a single object. Modify any such script to operate
on an array instead. Or, to return a single option as in earlier releases, set the 'SeparateInputs'
option to false.

Test File Comparison: Identify differences by comparing two test files
You can review test changes or updates by comparing two test files side by side. Test file comparison

is similar to comparisons of other MATLAB files that you compare using Compare on the MATLAB
toolstrip.

8-3

https://www.mathworks.com/help/releases/R2017b/sltest/ug/examine-test-failures-and-modify-baselines.html
https://www.mathworks.com/help/releases/R2017b/sltest/ug/specify-microsoft-excel-file-format-for-signal-data.html
https://www.mathworks.com/help/releases/R2017b/sltest/ug/specify-microsoft-excel-file-format-for-signal-data.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/addexcelspecification.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.baselinecriteria-class.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testinput-class.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testinput-class.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testcase.addbaselinecriteria.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testcase.addinput.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.baselinecriteria-class.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testinput-class.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testcase.addbaselinecriteria.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testinput-class.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testcase.addinput.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testinput-class.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testinput-class.html

R2017b

8-4

For more information, see Compare Test Files.

Test Sequence Editor enhancements: Change step hierarchy, reorder
transitions, and cut/copy/paste test steps

Create and edit test sequences with the enhanced Test Sequence Editor. For detailed information, see
Test Sequence Editor.

* Change the hierarchy level of a test step by indenting or outdenting the test step. Right-click the
test step, and select Indent to move it to a lower level, or Outdent to move it to a higher level.

* Reorder test steps. When hovering over a step, three dots appear left of the step name. Click and
drag the dots to move the step to a new position within the same hierarchy level.

* Reorder test step transitions. Hover over the transition number, then click and drag the transition
to the new order. The corresponding next step is maintained.

» Cut, copy, and paste test steps using the right-click context menu. You can paste before or after a
step, or paste as a substep.

Input and Baseline Signal Editing: Edit test case baseline and input
signal data

In R2017b, you can edit input signal data and expected outputs (baseline criteria) from MAT-files and
Microsoft Excel in the Test Manager. In previous releases, you edited only Excel input files in the Test
Manager.

You edit MAT-file data in the signal editor and Microsoft Excel data directly in Excel. For more
information on editing the baseline signal data, see Manually Update Signal Data in a Baseline. For
more information on editing input signals, see Edit Input Data Files in Test Manager.

Iteration Naming: Create rules to name autogenerated iterations

When auto generating iterations for a test case, you can customize iteration names by specifying a
naming pattern. For more information, see Create Table Iterations.

External Inputs for Real-Time Applications: In test cases for real-time
applications, map external data inputs to root Inport blocks

You can use external data mapped to root Inport blocks in real-time tests. This facilitates reusing
desktop test cases in real-time testing, as both desktop and real-time tests can access the same test
input data stored in an external file.

In your test harness or model, use root Inport blocks as sources. In the test case Inputs, map external
data to the root Inport blocks using Microsoft Excel or MAT-files. For an example of reusing a desktop
test case using input data in an Excel file, see Reuse Desktop Test Cases for Real-Time Testing.

https://www.mathworks.com/help/releases/R2017b/sltest/ug/introduction-to-the-test-manager.html#mw_9f4b4dc7-d5da-4858-bcd8-a46312506cde
https://www.mathworks.com/help/releases/R2017b/sltest/ug/test-sequence-editor.html
https://www.mathworks.com/help/releases/R2017b/sltest/ug/examine-test-failures-and-modify-baselines.html#mw_5542928b-ee1d-4f6a-9a42-4dc0cddfb943
https://www.mathworks.com/help/releases/R2017b/sltest/ug/test-case-sections.html#mw_e16d7469-30e8-4980-b9d6-bf9ec45a5550
https://www.mathworks.com/help/releases/R2017b/sltest/ug/run-multiple-combinations-of-tests-using-iterations.html#buy14l7
https://www.mathworks.com/help/releases/R2017b/sltest/ug/reuse-desktop-test-cases-for-real-time-testing.html

Test Harness .MDL Support: Create test harnesses for models saved

in .MDL file formats

Test harnesses support models that use the .MDL file format. Test harnesses for .MDL models are
saved externally. For more information about externally vs. internally saved test harnesses, see
Manage Test Harnesses

Functionality Being Removed or Changed

The Test Manager API has these changes.

Functionality

Result

Use Instead

Compatibility Considerations

refreshIfExist
s argument in
sltest.testman
ager.TestCase.
addBaselineCri
teria

Still runs for MAT-
files

'RefreshIfExists',B
oolean

SheetName
property for
sltest.testman
ager.TestInput

Still runs

ExcelSpecifications

SheetName is now read-only

sltest.testman
ager.TestCase.
addInput

Now returns an
array with Excel
files if the file had
multiple sheets

Use
'Separatelnputs', fa
1se with existing scripts

Use 'SeparateInputs', false
only to match functionality from
previous releases. The default of

true matches the behavior in
the interface.

https://www.mathworks.com/help/releases/R2017b/sltest/ug/organizing-test-sequences-and-assessments_bu460gw-1.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testcase.addbaselinecriteria.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testcase.addbaselinecriteria.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testcase.addbaselinecriteria.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testcase.addbaselinecriteria.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testinput-class.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testinput-class.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testcase.addinput.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testcase.addinput.html
https://www.mathworks.com/help/releases/R2017b/sltest/ref/sltest.testmanager.testcase.addinput.html

R2017a

Version: 2.2
New Features
Bug Fixes

Compatibility Considerations

R2017a

9-2

Harness Import: Simplify test harness management by converting test
harness models to Simulink Test harnesses

To simplify management and synchronization of standalone harness models, such as those created
manually, using Simulink Verification and Validation™, or Simulink Design Verifier, convert the
standalone models to test harnesses in Simulink Test. Converting standalone models to test harnesses
allows you to iterate on your design using push and rebuild functions, and manage test harnesses
using the UI and programmatic interface.

For more information, see Create Test Harnesses from Standalone Models and the function
sltest.harness.import.

Expanded Test Harness Capabilities: Create test harnesses with
additional semantics, blocks, sources, and synchronization behavior

1 Control when the component under test design synchronizes between the model and harness.
When creating a test harness, select the harness Synchronization Mode in the Advanced
Properties. For an existing harness, click the harness properties badge to change the
synchronization mode. For more information, see Synchronize Changes Between Test Harness
and Model. Synchronization modes include:

* Synchronize on harness open and close: The component in the main model, or the
test harness, is automatically updated when the harness closes or opens.

* Synchronize on harness open: The component in the test harness is updated when the
harness opens.

* Synchronize only during push and rebuild: Synchronization does not occur when
the harness opens or closes. You manually control synchronization by selecting Analysis >
Test Harness > Push Component and Parameters to Main Model or Analysis > Test
Harness > Rebuild Harness from Main Model.

2 Use Signal Builder blocks as sources for test inputs generated by Simulink Design Verifier
analysis. Signal Builder is a Harness Source option when you select Export test cases to
Simulink Test in the Simulink Design Verifier results dialog box. For more information, see Test
Models Using Inputs Generated by Simulink Design Verifier™ .

3 Test user-defined functions by creating test harnesses for the following additional blocks in the
User-Defined Functions library:
* S-Function block
* S-Function Builder block
* Level-2 MATLAB S-Function block
4 Create test harnesses for subsystems within linked library blocks.

Move and clone test harnesses across different blocks in the same model or in different models.
See Move and Clone Test Harnesses and the functions sltest.harness.move and
sltest.harness.clone.

6 Create test harnesses for models that use a mix of asynchronous and rate-based modeling.

Create test harnesses that honor the sorted execution order of blocks and subsystems for export
function modeling.

https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-test-harnesses-from-standalone-models.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.harness.import.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/sync-between-harness-and-model.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/sync-between-harness-and-model.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-test-cases-from-simulink-design-verifier-results.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-test-cases-from-simulink-design-verifier-results.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/organizing-test-sequences-and-assessments_bu460gw-1.html#bvm8kcd
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.harness.move.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.harness.clone.html

Compatibility Considerations

For sltest.harness.create and sltest.harness.set, the 'EnableComponentEditing'
option is removed. Editing the component under test is controlled by the CUT synchronization mode.
Update scripts that use the 'EnableComponentEditing' option to specify
'SynchronizationMode'.

» To prevent editing the component under test in the test harness (previously specified by
'EnableComponentEditing', false), use 'SynchronizationMode', 'SyncOnOpen'.

» To allow editing the component under test in the test harness (previously specified by
"EnableComponentEditing', true), use
'SynchronizationMode', 'SyncOnOpenAndClose' (default) or
'SynchronizationMode', 'SyncOnPushRebuildOnly".

Support for Debug Mode: Debug system under test simulation

From the Test Manager, you can debug the system under test simulation. Click the Debug button in
the Test Manager toolstrip before executing the test. The simulation pauses at simulation start and

presents a debug prompt at the command line. You can step through simulation using the Stepping

Options buttons in the Simulink Editor toolstrip. For more information, see Use Simulation Stepper

(Simulink).

Time Tolerance: Specify leading and lagging time tolerance in test
cases

Account for temporal shifts in your test results using time tolerances. Some test cases, such as real-
time tests, are affected by timing attributes of the execution environment and shifts in data logged
from physical systems. You can account for timing differences by including time tolerance in baseline
and equivalence criteria. For details, see Apply Tolerances to Test Criteria.

Simscape Component Support: Create test harnesses for subsystems
connected by Simscape physical connections

You can test subsystems connected by Simscape physical connections using test harnesses. Test
harnesses isolate Simscape subsystems, providing physical signal ports at the subsystem interface. To
define the physical system, add blocks to the test harness. To connect Test Sequence and Test
Assessment blocks to the physical system, use Simulink-PS Converter and PS-Simulink Converter
blocks.

Expanded API: Edit and manage Test Sequence Blocks with an
expanded API

The sltest.testsequence API includes additional functions to read, edit, and delete test sequence
steps, transitions, and data symbols. Use these functions to create, edit, and manage Test Sequence
and Test Assessment blocks. For more information, see the Test Sequence Programming section on
the Logic-Based Testing page.

The 'Label' property name has been changed to 'Action' to more closely match the functionality
of the argument in creating and editing test sequence steps. The change applies to the functions

9-3

https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.harness.create.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.harness.set.html
https://www.mathworks.com/help/releases/R2017a/simulink/ug/simulation-stepper-interface.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/how-tolerances-are-applied-to-test-criteria.html
https://www.mathworks.com/help/releases/R2017a/sltest/sequence-driven-testing.html

R2017a

9-4

*+ sltest.testsequence.addstepafter
*+ sltest.testsequence.addstepbefore
* sltest.testsequence.addstep

* sltest.testsequence.editstep

Compatibility Considerations

If you have a script that uses these functions with the property name 'Label’, running the script
returns a warning that 'Label' is removed. Update the script to use the property name 'Action’
instead of 'Label’.

Signal Logging Selection: Specify signals to log in a test case without
modifying the model

Using the Simulation Outputs section, you can log additional signals in the Test Manager without
changing the logging settings in your model. For more information, see Simulation Outputs.

Proof Objective Support for verify() Statements: verify() statements
interpreted as proof objectives for Simulink Design Verifier analysis

If your model or test harness contains a verify () statement in a Test Assessment or Test Sequence
block, Simulink Design Verifier property proving analysis interprets the verify() statement as a
proof objective. This allows your verify () statements to be used for both functional testing and
formal analysis, without having to add Proof Objective blocks to the model. Also, for verify ()
statements falsified, you can create counterexamples that falsify the objective during simulation. For
more information about property proving, see Prove Properties in a Model (Simulink Design Verifier).
For more information about verify () statements, see Assess Simulation Using Logical Statements.

Enhanced Reporting: Include MATLAB figures, save report options,
and automatically generate reports after testing

* You can include custom MATLAB figures in your report. For details, see Create, Store, and Open
MATLAB Figures.

* You can automatically create a report after executing a test file. In the test file, under Test File
Options, select Generate report after execution. The Test Manager displays options for the
report, which are saved with the test file. For details, see Export Test Results and Generate
Reports.

Test Manager Integration with Simulink Design Verifier: Generate
additional tests from within the Test Manager to increase coverage

If you have Simulink Design Verifier, you can generate tests to achieve additional coverage starting
from the coverage results pane in the Test Manager. After executing tests, view the cumulative
coverage results in the Test Manager results pane. Select the coverage result and click Add Tests for
Missing Coverage. For an example, see Perform Functional Testing and Analyze Test Coverage.

https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testsequence.addstepafter.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testsequence.addstepbefore.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testsequence.addstep.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testsequence.editstep.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/test-case-sections.html#bulu9ho
https://www.mathworks.com/help/releases/R2017a/sldv/ug/prove-properties-in-a-model.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/assess-simulation-using-logical-statements.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-store-and-access-custom-figures.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-store-and-access-custom-figures.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-a-test-results-report.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/create-a-test-results-report.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/functional-testing-and-coverage-analysis.html

Test Manager Hierarchies: Expand and collapse trees using context
menu

You can expand or collapse hierarchies in the Test Manager using the context menu. For example, in
the Test Browser pane, right-click a test file or test suite. From the context menu, select Expand All
or Collapse All. A similar context menu item appears in hierarchies in the Results and Artifacts
pane.

Stop simulation at the end of test input data

If you have timeseries test input data, you can limit the simulation data output by stopping simulation
at the end of the test input timeseries. For example, if your input data stops after 10 seconds, but
your model simulation time is set to 300 seconds, limit the simulation to avoid 290 seconds of
unnecessary data. Select Stop simulation at last time point in the Inputs section of the test case
definition.

Capture baseline data from test case iterations

If your test case is configured with table iterations, you can capture baseline data from logged signals
using a one-click process. Baseline criteria is captured in a separate file for each iteration, and each
baseline data file appears with its corresponding iteration in the iterations table. For an example, see
Capture Baseline Data from Iterations.

Simplify test editor view by hiding unused sections

You can simplify the view for test files, test suites, and test cases by hiding unused test sections. In
the Test Manager, click the Preferences button in the toolbar, and select sections to hide or display.
Populated sections are always displayed. This is a global Test Manager setting. To customize view for
multiple users, you can set the preferences programmatically using
sltest.testmanager.getpref and sltest.testmanager.setpref. For more information, see
Test Sections.

Test Case Conversion: Convert desktop simulation test cases to real-
time test cases

You can convert test cases that run on desktop simulation into real-time test cases. In the Test
Browser, right-click the test case name and select Convert to > Real-Time Test.

Data dimension settings for certain test harness inputs

When you create a test harness using From Workspace, From File, or Constant blocks as sources, the
default value of the source reflects dimensions of the signal.

Run MATLAB Unit Tests in Fast Restart mode

The MATLAB Unit Test framework supports Fast Restart mode for running test cases authored in
Simulink Test.

https://www.mathworks.com/help/releases/R2017a/sltest/ug/run-multiple-combinations-of-tests-using-iterations.html#bvn5uaq
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testmanager.getpref.html
https://www.mathworks.com/help/releases/R2017a/sltest/ref/sltest.testmanager.setpref.html
https://www.mathworks.com/help/releases/R2017a/sltest/ug/test-case-sections.html

R2016b

Version: 2.1
New Features

Bug Fixes

R2016b

Custom Criteria: Define custom criteria for test case evaluation

You can customize test case pass and fail criteria using MATLAB and the MATLAB Unit Testing
framework. Use custom criteria in addition to assessments such as verify statements and
timeseries comparisons. For example, assess the final value of a signal, set a maximum threshold, or
post-process signal results using MATLAB toolboxes. With MATLAB Unit Test, qualifications return
pass or fail results to the Test Manager. See Apply Custom Criteria to Test Cases.

MATLAB Unit Test Integration: Use MATLAB Unit Test to execute and
integrate tests

You can run tests authored in Simulink Test using the MATLAB Unit Test framework. This allows you
to combine execution of tests authored in both frameworks. You can customize test execution with a
test runner, and access test results in MATLAB.

With the MATLAB Unit Test framework, you can set up systematic testing using continuous
integration systems. Use plugins such as the TAPPPlugin to create results that are compatible with
CI systems such as Jenkins. See Test Models Using MATLAB Unit Test.

Test Case Tagging: Filter and execute tests using custom tags

You can group tests by assigning custom tags to test cases and suites, and filter tests to view test
case subsets. Running filtered tests can save time compared to running a full test suite. Filter tests in
the test browser using the syntax tag:<name>. To run filtered tests, expand the drop-down menu
under Run and select Run filtered. See Filter Test Execution and Results.

Graphical Output for Model Verification Blocks: Analyze results from
Assertion and Model Verification blocks in Simulation Data Inspector
and the Test Manager

Blocks in the Model Verification library return a pass or fail result to the Test Manager, using
semantics similar to a verify statement. Viewing results graphically helps you to:

* Determine the time when a failure occurs.
* Debug the model by comparing the verification result with relevant signals.

» Trace failures from the graphical results to the model.

See View Graphical Results From Model Verification Library.

Initialize and Terminate Functions: Test harnesses include calls for
initialize and terminate systems in a model

When you create a test harness for a model block diagram, you can include calls to initialize and

terminate systems. The test harness creates a Test Sequence block configured to schedule function
calls to initialize and terminate systems.

10-2

https://www.mathworks.com/help/releases/R2016b/sltest/ug/define-custom-criteria-for-test-case-results.html
https://www.mathworks.com/help/releases/R2016b/sltest/ug/run-test-files-using-matlab-unit-test.html
https://www.mathworks.com/help/releases/R2016b/sltest/ug/filter-test-execution-and-results.html
https://www.mathworks.com/help/releases/R2016b/sltest/ug/graphical-results-using-model-verification-block-library.html

Harness Requirements Linking: Establish requirements traceability for
external test harnesses

Requirements linking is supported for test harnesses that are stored externally as independent SLX
files.

Test Case Conversion: Convert test cases between baseline,
equivalence, and simulation test types

You can convert existing test cases between baseline, equivalence, and simulation test types. This
helps facilitate test case reuse. For example, to reuse an existing baseline test as an equivalence test,
copy the baseline test and change the copied test case to an equivalence test. To convert a test case,

1 In the Test Browser, right-click the test case name.
2 Select Convert to > Baseline Test / Equivalence Test / Simulation Test.

Additional Report Templates: Create PDF and HTML reports using
report templates

With a MATLAB Report Generator license, you can create custom PDF and HTML reports from the
Test Manager using report templates. In the Create Test Result Report dialog box, select a PDFTX or
HTMTX template file. For more information, see Export Test Results and Generate Reports, and
Create Report Templates.

Output Event Definition: Create Test Sequences that trigger actions in
other subsystems

You can use trigger outputs in a Test Sequence block or Test Assessment block to activate a triggered
subsystem or signal an event in a Stateflow chart. To create a trigger output in a Test Sequence
block,

1 In the test sequence editor Symbols pane, click the Add trigger icon next to the Qutput

section.
Symbols EtEp
Input
g step
Output £ ":L}'_f_l f‘_.J
Local | Add trigger |

2 Enter the output name, and click Add trigger.

X
Cutputi Add frigger

3 Trigger outputs initialize to 0. In the test sequence, use the send command to activate the
trigger output.

send (Outputl)

10-3

https://www.mathworks.com/help/releases/R2016b/sltest/ug/create-a-test-results-report.html
https://www.mathworks.com/help/releases/R2016b/rptgen/report-templates.html

R2016b

10-4

Access verify statement output using a programmatic interface

Simulation data output from verify statements are available via a programmatic interface. To get
assessment results, use the sltest.getAssessments function.

Revised visualization for verify statements and other assessments

The Test Manager displays verify statement results and other assessments using a stem plot, which
plots the verify output data as stems extending from a baseline along the x-axis. The baseline is a
pass result, with stems extending from the baseline for untested and fail results. Data color
corresponds to the statement result:

Color Result
Red Fail
Green Pass
Gray Untested

To maintain readability, plots adjust the data displayed if the result is the same for numerous
consecutive data points. Zooming in to smaller x-axis intervals displays additional discrete data
points. Changes in result are always displayed, for example, from pass to fail. See Assess
Simulation Using Logical Statements for an example. To get assessment results programmatically, use
the sltest.getAssessments function.

Common test harness sources and sinks for signal and control inputs,
and revised signal routing

When you create a test harness, additional inputs are connected to the specified harness source and
sink type, rather than to Inport or Outport blocks. Additional inputs expand your ability to drive
component inputs with a single source type for:

* Control inputs

* Function call inputs

* Data store memory

* Goto and From blocks

* Export function models

* Simulink functions

To simplify test harness block diagrams, the signal routing uses Goto and From blocks to connect
component under test input and output signals to Test Assessment blocks. Also, some signal routing
blocks are contained in input and output conversion subsystems.

Add baseline criteria using expected outputs captured by Simulink
Design Verifier

Simulation output captured by running Simulink Design Verifier tests are now included as baseline
data in test cases exported from Simulink Design Verifier to Simulink Test.

https://www.mathworks.com/help/releases/R2016b/sltest/ref/sltest.getassessments.html
https://www.mathworks.com/help/releases/R2016b/sltest/ug/assess-simulation-using-logical-statements.html
https://www.mathworks.com/help/releases/R2016b/sltest/ug/assess-simulation-using-logical-statements.html
https://www.mathworks.com/help/releases/R2016b/sltest/ref/sltest.getassessments.html

Set SIL or PIL simulation mode from the Test Manager for a model
referenced by a test harness

From the Test Manager, you can override the simulation mode to software-in-the-loop (SIL) or
processor-in-the-loop (PIL) for a model referenced by a component under test in a test harness.
Overriding the referenced model simulation model applies to test harnesses for block diagrams and
test harnesses for Model blocks, since these types of test harnesses use Model blocks as the
component under test. Setting the simulation mode from the Test Manager allows you to use an
equivalence test and a single test harness to perform SIL or PIL output equivalence verification.

Highlight dependencies in test harnesses using Model Slicer

If you have a Simulink Design Verifier license, you can use the Model Slicer to highlight functional
dependencies in test harnesses created by Simulink Test. Highlighting functional dependencies helps
you analyze behavior in large or complex test harnesses. See Highlight Functional Dependencies.

View baseline data graphically

In the Test Manager, you can view a graph of test case baseline data. This facilitates reviewing the
baseline data before you map it to a test case and run tests. In the Baseline Criteria section of the
test case, highlight the signal name and click Visualize. The graph appears in the Simulation Data
Inspector.

-

Include baseline data in test result

b+ f14_baseline. mat

10-5

https://www.mathworks.com/help/releases/R2016b/sldv/ug/identify-model-interest-to-isolate-dependencies.html

R2016a

Version: 2.0
New Features

Bug Fixes

R2016a

11-2

Real-Time Testing: Author and execute real-time tests with Simulink
Real-Time

A new Real-Time Test builds a Simulink Real-Time™ application from your model or test harness and
runs it on a target computer. You can assess the real-time execution using verify statements, and
collect real-time data for analysis in the Test Manager. See Test Models in Real Time.

verify Statement: Author test sequence assessments to verify
simulation behavior without stopping the simulation

In the Test Sequence and Test Assessment blocks, you can use verify statements to assess a logical
condition without stopping simulation. A verify statement returns a fail, pass, or untested result.
Results of each verify statement appear in the Test Manager. See Assess Simulation Using Logical
Statements.

Test Report Customization: Customize test result reports using
Simulink Report Generator

You can write scripts to customize the details of Test Manager result reports such as text formatting,
output plots, headers and footers, layouts, and more. See Customize Generated Reports.

External Test Harnesses: Save Simulink Test harnesses as external
files

You can opt to save your test harnesses externally, as independent SLX files. External test harnesses
allow you to create or change test harnesses without changing the model SLX file, which is useful for
models under change management. External harnesses provide the same synchronization and push/
rebuild capability as internal harnesses saved with the model SLX file. See Manage Test Harnesses.

Test Iterations: Create tests with iterations such as parameters and
input vectors

To test and sweep through a range of parameters, inputs, and other test case settings, you can author
and organize many tests in one place using iterations. To help create iterations, templates are
available for Signal Builder groups, parameter sets, inputs, configuration settings, and baseline
criteria. You can run iterations using fast restart if it is supported by your model. See Run Multiple
Combinations of Tests Using Iterations.

Test generated using Simulink Design Verifier now appear as iterations in a test case rather than
separate test cases in a test suite.

Aggregate Coverage Results: Aggregate Simulink Verification and
Validation coverage results across executed tests

If you have a Simulink Verification and Validation license, then you can collect the coverage results
from your tests. The results are aggregated at test case, test suite, and test file levels. Coverage
results can also be included in the Test Manager results report. See Collect Coverage in Tests.

https://www.mathworks.com/help/releases/R2016a/sltest/ug/test-models-in-real-time-and-assess-results.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/assess-simulation-using-logical-statements.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/assess-simulation-using-logical-statements.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/generate-custom-reports.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/organizing-test-sequences-and-assessments_bu460gw-1.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/run-multiple-combinations-of-tests-using-iterations.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/run-multiple-combinations-of-tests-using-iterations.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/collect-model-coverage-in-tests.html

Parallel Test Execution: Distribute test execution in parallel to
decrease test run time

If you have a Parallel Computing Toolbox™ license, then you can run tests in parallel across multiple
workers on the same machine to decrease test execution time. See Run Tests Using Parallel
Execution.

Test Harness for Libraries: Create and manage test harnesses for
library components

You can create test harnesses for library blocks and move test harnesses from linked blocks to the
library source. See Test Library Blocks.

Requirement Traceability: Link to requirements in test harnesses and
test sequences

If you have a Simulink Verification and Validation license, you can create requirements links for
model objects in internally stored test harnesses. Requirement links for the component under test
synchronize between the main model and the test harness. You can also create requirements links for
test steps in Test Sequence and Test Assessment blocks. See Link Tests to Requirements.

Simulink and Export Function Support: Create test harnesses for
models containing Simulink functions and export functions

If you generate a harness for a model configured to export functions, the harness will contain a new
Test Sequence block that schedules the function-call signals and Simulink Functions in the export-
function model. You choose the sources and sinks for other subsystem inputs and outputs. See Test
Models that use Export Functions for AUTOSAR-Compliant Code.

Test Assessment block available for all harness sources

The Simulink Test library offers a separate Test Assessment block entry. You can include a Test
Assessment block with any test harness source using the test harness creation dialog box. The Test
Assessment block is a Test Sequence block configured with a default When decomposition sequence
and a verify statement, which are commonly used in model assessment.

Test Sequence block support for messages

Test Sequence blocks support sending and receiving messages. Messages are objects that carry data
and can be queued. You can send a message using a message output and the send command, and
receive a message using a message input and the receive command. When a test step receives a
message, it can use the receive result or the message data in a step action or transition. See Test
Sequence Action and Transition Operations.

Test Sequence Editor enhancements

The Test Sequence Editor offers several enhancements for the Test Sequence and Test Assessment
blocks.

11-3

https://www.mathworks.com/help/releases/R2016a/sltest/ug/run-tests-using-parallel-execution.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/run-tests-using-parallel-execution.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/functional-testing-in-verification_bu394b1-1.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/use-requirements-based-test-cases.html
https://www.mathworks.com/help/releases/R2016a/sltest/examples/test-models-that-use-export-functions-for-autosar-compliant-code.html
https://www.mathworks.com/help/releases/R2016a/sltest/examples/test-models-that-use-export-functions-for-autosar-compliant-code.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/act-or-transition-using-temporal-and-event-operators.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/act-or-transition-using-temporal-and-event-operators.html

R2016a

* You can add a description for a test step using the Description field.

* Code generated from the block includes test step descriptions as commented code. To include
the commented descriptions in generated code, select Simulink block descriptions in the
Code Generation > Comments section of the model configuration parameters.

* Simulink Report Generator includes descriptions in the Test Sequence block reports.
* Syntax highlighting: The Test Sequence Editor includes MATLAB syntax highlighting for improved
readability.

* Tab completion: The Test Sequence Editor suggests words, such as data symbols and functions, to
complete test step programming syntax. A list appears based on the characters you type. Select a
word from the list and press Tab, or press Esc to close the suggestions.

* Port reordering: You can reorder block inputs and outputs by dragging an Input or Output
symbol name up or down in the Symbols sidebar.

Simulink Projects integration

You can create a Simulink project from a test file. When you create a project from a test file, it
enables you to perform file dependency analysis. Projects let you easily see the impact that changes
could have on tests that might use shared files. You can also run tests directly from the Simulink
Projects interface. For more information about Simulink Projects integration, see Manage Test File
Dependencies.

Test Generation for Subsystems
You can generate tests for a subsystem in a model from the Test Manager. The Test Manager creates

a test harness for the subsystem and enables you to test the subsystem independently, thereby
isolating it from the main model. See Generate Test Cases from Model Components.

11-4

https://www.mathworks.com/help/releases/R2016a/sltest/ug/manage-test-file-dependencies.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/manage-test-file-dependencies.html
https://www.mathworks.com/help/releases/R2016a/sltest/ug/generate-test-cases-from-model-components.html

R2015aSP1

Version: 1.0.1

Bug Fixes

R2015b

Version: 1.1
New Features

Bug Fixes

R2015b

13-2

Expanded Simulink Test API: Automate test creation, editing, and
execution using MATLAB scripts

You can use functions, classes, and methods to programmatically:

* Generate test cases from a model based on existing test harnesses and signal builder groups. See
sltest.testmanager.createTestsFromModel.

» Edit test case simulation properties, parameter sets, and comparison criteria

* Create test files, test suites, and test cases

* Copy and move test suites and test cases

* Run individual test suites and test cases

* Copy a test harness, including its contents, configuration set, properties, and model association,
using the sltest.harness.clone function

For more information about using the API, see Automate Tests Programmatically.

Test Case Automation: Create test cases with inputs generated by
Simulink Design Verifier

Starting with the results of a Simulink Design Verifier analysis, Simulink Test creates test cases that
use the inputs generated by Simulink Design Verifier. Test cases appear in the Test Manager and can
use an existing or new test harness. See Test Models Using Inputs Generated by Simulink Design
Verifier.

Qualification and Certification: Qualify Simulink Test for supported
industry standards, including DO-178 and 1SO 26262

You can use the IEC Certification Kit and DO Qualification Kit to qualify Simulink Test for supported
industry standards, including DO-178, ISO 26262, and IEC 61508.

Enhanced Reporting: Use Microsoft Word templates to customize
report generation

If you have a MATLAB Report Generator license, you can insert report items from the Simulink Test
generated report into your own Microsoft Word templates. For more information on report
generation, see Export Test Results and Generate Reports.

Additional tools for Test Sequence editing and debugging

The test sequence editor includes new tools you can use when creating, editing, and debugging a test
sequence, including

* Undo and redo edits

* Cut, copy, and paste test steps using keyboard shortcuts

* Simulation rollback

https://www.mathworks.com/help/releases/R2015b/sltest/ref/sltest.testmanager.createtestsfrommodel.html
https://www.mathworks.com/help/releases/R2015b/sltest/ref/sltest.harness.clone.html
https://www.mathworks.com/help/releases/R2015b/sltest/ug/test-models-programmatically.html
https://www.mathworks.com/help/releases/R2015b/sltest/ug/create-test-cases-from-simulink-design-verifier-results.html
https://www.mathworks.com/help/releases/R2015b/sltest/ug/create-test-cases-from-simulink-design-verifier-results.html
https://www.mathworks.com/help/releases/R2015b/sltest/ug/create-a-test-results-report.html

Simulink Report Generator inclusion for Test Sequence block

You can include data from Test Sequence blocks in a report, using the Test Sequence component in
Simulink Report Generator.

13-3

R2015a

Version: 1.0

New Features

R2015a

14-2

Introduction to Simulink Test

Simulink Test provides tools for authoring, managing, and systematically executing simulation-based
tests. You can create nonintrusive test harnesses to test models and subsystems. You can generate
reports, archive and review test results, rerun failed tests, and debug the component or system under
test.

Test harness for subsystem and model testing

Test harnesses provide a separate, nonintrusive testing environment for your models. A test harness
associates with a particular model or model component and persists with the model. You define tests
by adding inputs and assessments to the harness, and you can set harness-specific simulation
parameters. The test harness synchronizes model changes to the main model. The Test Manager can
access the test harnesses in your model. See Refine, Test, and Debug a Subsystem and Test Harness
and Model Relationship.

Test Sequence block for defining tests and assessments

Test Sequence blocks concisely define a series of test steps and transitions using MATLAB action
language. Each step defines the block output values and the condition that triggers the transition to
another test step. You can define a test step hierarchy using different transition modes. Test
Sequence blocks include concise output functions, such as square and sawtooth, and operators that
return temporal information, such as the elapsed step time or the duration of a condition.

You can assess the model operation in the test sequence, or in a separate Test Sequence block. See
Test Downshift Points of a Transmission Controller and the Test Sequence block.

Test Manager for test authoring and systematic test execution

The Simulink Test Manager enables you to organize and run large sets of tests for Simulink models.
Using the Test Manager, you can author and execute test cases individually or as a batch. You can
also link to test requirements from each test case if you have a Simulink Verification and Validation
license. After you execute tests, the test outcome and any simulation output appear in the Results
and Artifacts pane of the Test Manager.

Baseline, equivalence, and back-to-back testing with pass-fail criteria

You can test models using baseline and equivalence test case templates in the Test Manager. Baseline
test cases compare simulation output to defined expected outputs. Equivalence test cases compare
simulation output a second simulation. The simulation output comparison is evaluated according to
absolute or relative tolerances, which you specify under Baseline Criteria or Equivalence Criteria.
For more information on tolerances, see How Tolerances Are Applied to Test Criteria.

Archiving and reporting test cases and test results

After you execute tests, you can export the results in the Results and Artifacts pane of the Test
Manager to a file or save them in a report. For more information on exporting results and generating
reports, see Export Test Results and Generate Reports.

https://www.mathworks.com/help/releases/R2015a/sltest/ug/refine-and-test-a-subsystem-in-isolation.html
https://www.mathworks.com/help/releases/R2015a/sltest/ug/relationship-between-harness-and-model-block-diagrams.html
https://www.mathworks.com/help/releases/R2015a/sltest/ug/relationship-between-harness-and-model-block-diagrams.html
https://www.mathworks.com/help/releases/R2015a/sltest/ug/test-downshift-points-of-a-transmission-controller.html
https://www.mathworks.com/help/releases/R2015a/sltest/ref/testsequence.html
https://www.mathworks.com/help/releases/R2015a/sltest/ug/how-tolerances-are-applied-to-test-criteria.html
https://www.mathworks.com/help/releases/R2015a/sltest/ug/create-a-test-results-report.html

	R2021a
	External C/C++ code testing in the Test Manager
	Collect coverage across multiple releases
	Atomic subsystem unit testing
	Debug verify signal test failures using Model Slicer
	Additional support for observers
	Customize properties when creating test harnesses
	Test sequence scenarios in iterations
	Updates to Create Test for Model Component wizard
	Simulation mode iterations in a single test case
	Output signal logging option for test harness creation
	Include test harnesses when converting subsystem to model reference
	Simulation progress indicator updates
	Simulation log messages at the command line
	Enhanced test harness support for MATLAB-based Simulink tests
	Run with Stepper support at test suite and test file levels
	Functionality being removed or changed
	Old semantics for Test Sequence blocks will be removed

	R2020b
	Multiple scenarios in Test Sequence block
	Parallel test execution on a remote cluster
	Test failure debugging using Model Slicer
	Multi-release equivalence tests
	Test case reordering
	MATLAB-based Simulink tests
	Generate tests for models and reuse test files using Test for Model Component wizard
	Model reference parameter overrides
	Reusable library subsystem SIL testing
	Conditional breakpoints in Test Sequence block
	Assessment callback and t (time) symbol
	Test harness locking and model synchronization
	Test harness metadata storage anywhere on MATLAB path
	Baseline data file updates for Excel files
	Bus element logging
	Model Testing Dashboard
	Functionality being removed or changed
	sltest.testmanager.TestFile.createTestForSubsystem and sltest.testmanager.TestSuite.createTestForSubsystem will be removed
	Removed real-time test case support for parameter overrides in model references
	Removed real-time test case support for logging output ports and states

	R2020a
	Generated code reuse for SIL/PIL test harness generation
	Test coverage enhancements in the Test Manager
	Use Stateflow chart as test harness source and scheduler
	verify keyword support in Stateflow charts
	Observer support for variable solvers and Stateflow states and variables
	Test harness support for Subsystem Reference blocks
	Results viewer enhancements in the Test Manager
	Updated execution order for test case callbacks

	R2019b
	Guided Back-to-Back Testing Wizard: Use guided workflow to set up back-to-back equivalence and baseline testing
	SIL/PIL Equivalence Testing: Create equivalence test cases from the SIL/PIL Manager in Embedded Coder
	Customized Test Reports: Create test specification reports from a test file, test suite, or test case
	Test Result Reports: Multiple plots per page
	Test Assessments: Display results in the Simulation Data Inspector
	Simulink Toolstrip: Contextual tabs for Simulink Test

	R2019a
	Temporal Requirements Verification: Assess model timing and signal behavior using a form-based editor
	Observers: Wirelessly access signals and add verification logic without side effects
	Simulation Output: Select signals and log data using a revised interface
	Input Data and Iterations: Test and iterate using Signal Editor scenarios
	Test Sequence Summary: Navigate test sequence steps using a summary view
	Test Sequence Search: Find text in a test sequence
	Test Coverage: Justify or exclude model objects using a coverage filter
	Baseline Testing: Store baseline data in MLDATX format
	Testing with MATLAB Unit Test
	Simulink Test contextual tab in the Simulink toolstrip
	Test harness support for bus element ports

	R2018b
	Excel-Based Testing: Define test cases in Excel spreadsheets
	C Caller Block Support: Test models that contain handwritten code
	SystemVerilog Assertions: Map Test Assessment blocks to SystemVerilog Assertions in generated DPI components
	Unified Scheduling Options: Generate scheduler for modeling styles including export function models and rate-based models
	Test harness support for string data types
	Testing with MATLAB Unit Test
	Ability to overwrite simulation output results
	Functionality being removed or changed
	DriveFcnCallWithTestSequence in sltest.harness.create is not recommended

	R2018a
	Coverage Aggregation: Merge coverage results from multiple test runs
	Input Data Templates: Generate ​Excel and MAT-file templates for signal data from models
	Excel Format for Baseline Tests: Capture baseline simulation data in Excel files​
	Excel Format Changes: Save test inputs and outputs in same sheet
	Signal Editor: Create test scenario input data using a Signal Editor block source
	Coverage Metrics: Function and function-call metrics reported in Test Manager
	Changes to Test Sequence block programmatic interface
	Testing with MATLAB Unit Test

	R2017b
	Test Harness Generation Callbacks: Customize harness creation with post-create and post-rebuild callbacks
	Harness Component Synchronization Comparison: Identify differences in the component under test before explicitly synchronizing harnesses
	Multirelease Testing: Execute test cases with older MATLAB releases
	Signal Failure Navigation and Baseline Updates: Navigate between signal comparison failure regions, and automatically update baseline data
	Expanded Microsoft Excel Support: Define test inputs and expected outputs including bus support and data type definition
	Test File Comparison: Identify differences by comparing two test files
	Test Sequence Editor enhancements: Change step hierarchy, reorder transitions, and cut/copy/paste test steps
	Input and Baseline Signal Editing: Edit test case baseline and input signal data
	Iteration Naming: Create rules to name autogenerated iterations
	External Inputs for Real-Time Applications: In test cases for real-time applications, map external data inputs to root Inport blocks
	Test Harness .MDL Support: Create test harnesses for models saved in .MDL file formats
	Functionality Being Removed or Changed

	R2017a
	Harness Import: Simplify test harness management by converting test harness models to Simulink Test harnesses
	Expanded Test Harness Capabilities: Create test harnesses with additional semantics, blocks, sources, and synchronization behavior
	Support for Debug Mode: Debug system under test simulation
	Time Tolerance: Specify leading and lagging time tolerance in test cases​
	Simscape Component Support: Create test harnesses for subsystems connected by Simscape physical connections
	Expanded API: Edit and manage Test Sequence Blocks with an expanded API
	Signal Logging Selection: Specify signals to log in a test case without modifying the model​
	Proof Objective Support for verify() Statements: verify() statements interpreted as proof objectives for Simulink Design Verifier analysis
	Enhanced Reporting: Include MATLAB figures, save report options, and automatically generate reports after testing
	Test Manager Integration with Simulink Design Verifier: Generate additional tests from within the Test Manager to increase coverage
	Test Manager Hierarchies: Expand and collapse trees using context menu
	Stop simulation at the end of test input data
	Capture baseline data from test case iterations
	Simplify test editor view by hiding unused sections
	Test Case Conversion: Convert desktop simulation test cases to real-time test cases
	Data dimension settings for certain test harness inputs
	Run MATLAB Unit Tests in Fast Restart mode

	R2016b
	Custom Criteria: Define custom criteria for test case evaluation
	MATLAB Unit Test Integration: Use MATLAB Unit Test to execute and integrate tests
	Test Case Tagging: Filter and execute tests using custom tags
	Graphical Output for Model Verification Blocks: Analyze results from Assertion and Model Verification blocks in Simulation Data Inspector and the Test Manager
	Initialize and Terminate Functions: Test harnesses include calls for initialize and terminate systems in a model
	Harness Requirements Linking: Establish requirements traceability for external test harnesses
	Test Case Conversion: Convert test cases between baseline, equivalence, and simulation test types
	Additional Report Templates: Create PDF and HTML reports using report templates
	Output Event Definition: Create Test Sequences that trigger actions in other subsystems
	Access verify statement output using a programmatic interface
	Revised visualization for verify statements and other assessments
	Common test harness sources and sinks for signal and control inputs, and revised signal routing
	Add baseline criteria using expected outputs captured by Simulink Design Verifier
	Set SIL or PIL simulation mode from the Test Manager for a model referenced by a test harness
	Highlight dependencies in test harnesses using Model Slicer
	View baseline data graphically

	R2016a
	Real-Time Testing: Author and execute real-time tests with Simulink Real-Time
	verify Statement: Author test sequence assessments to verify simulation behavior without stopping the simulation
	Test Report Customization: Customize test result reports using Simulink Report Generator
	External Test Harnesses: Save Simulink Test harnesses as external files
	Test Iterations: Create tests with iterations such as parameters and input vectors
	Aggregate Coverage Results: Aggregate Simulink Verification and Validation coverage results across executed tests
	Parallel Test Execution: Distribute test execution in parallel to decrease test run time
	Test Harness for Libraries: Create and manage test harnesses for library components
	Requirement Traceability: Link to requirements in test harnesses and test sequences
	Simulink and Export Function Support: Create test harnesses for models containing Simulink functions and export functions
	Test Assessment block available for all harness sources
	Test Sequence block support for messages
	Test Sequence Editor enhancements
	Simulink Projects integration
	Test Generation for Subsystems

	R2015aSP1
	R2015b
	Expanded Simulink Test API: Automate test creation, editing, and execution using MATLAB scripts
	Test Case Automation: Create test cases with inputs generated by Simulink Design Verifier
	Qualification and Certification: Qualify Simulink Test for supported industry standards, including DO-178 and ISO 26262
	Enhanced Reporting: Use Microsoft Word templates to customize report generation
	Additional tools for Test Sequence editing and debugging
	Simulink Report Generator inclusion for Test Sequence block

	R2015a
	Introduction to Simulink Test
	Test harness for subsystem and model testing
	Test Sequence block for defining tests and assessments
	Test Manager for test authoring and systematic test execution
	Baseline, equivalence, and back-to-back testing with pass-fail criteria
	Archiving and reporting test cases and test results

